Telegram Group & Telegram Channel
Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started



group-telegram.com/def_model_train/1028
Create:
Last Update:

Хочется еще упомянуть несколько важных свойств автоэнкодеров, которые авторы обнаружили в статье

– У фичей есть своя геометрическая структура, где похожия фичи оказываются близки к друг другу (что ожидаемо). Например, Золотые Ворота близки ко всем остальным достопримечательностям СФ, а отдаленно они связаны с другими популярными местами, типа статуи Иисуса в Рио-де-Жанейро
– Одинаковые фичи оказываются близки в автоэнкодерах всех размеров. Различие между ними в том, что в больших экодерах происходит feature splitting – если в маленькой модели мы найдем какое-то общее понятие, то в больших модель оно разобъется на что-то более конкретное. Вот тут есть интерактивный UMAP
– Нашелся также и scaling law:
Если концепт появляется один раз на миллиард токенов, то нам нужно пропорционально миллиарду активных фич в SAE, чтобы найти ту, которая бы уникально описывала этот концепт
– Для 82% фичей не нашлось сильно скоррелированных нейронов
– Хотя SAE тренировались только на тексте, они оказались способны реагировать и на картинки!
– Фичи отвечают как за абстрактные, так и за конкретные концепты. Например, одна и та же фича активируется на общие рассуждение о безопасности кода, и на конкретные примеры такого кода
– Если модели нужны промежуточные размышления, то активируются фичи, которые отвечают за “пропущенный концепт”. На конкретном примере: если модели нужно ответить на вопрос “Кто был главным соперником команды, в которой играл Коби Брайант”, то больше всего на финальный ответ “Boston Celtics” будут влиять фичи “Коби Брайант” -> его команда “Los Angeles Lakers” (пропущенный концепт) -> фича, отвечающая за спортивные противостояния. Я обожаю, когда в статьях такое находят! По-моему это отличная ответчочка на мнение, что LLM это стохастические попугаи и не понимают, что они генерируют

Спасибо, что дочитали этот лонгрид! Мне очень понравилась статья, и если вас тоже заинтриговала тема mechanistic interpretability, авторы предалагют вот этот гайд: https://neelnanda.io/mechanistic-interpretability/getting-started

BY я обучала одну модель




Share with your friend now:
group-telegram.com/def_model_train/1028

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. However, the perpetrators of such frauds are now adopting new methods and technologies to defraud the investors. Right now the digital security needs of Russians and Ukrainians are very different, and they lead to very different caveats about how to mitigate the risks associated with using Telegram. For Ukrainians in Ukraine, whose physical safety is at risk because they are in a war zone, digital security is probably not their highest priority. They may value access to news and communication with their loved ones over making sure that all of their communications are encrypted in such a manner that they are indecipherable to Telegram, its employees, or governments with court orders. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals.
from vn


Telegram я обучала одну модель
FROM American