Telegram Group & Telegram Channel
Linformer: Self-Attention with Linear Complexity
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma
Статья: https://arxiv.org/abs/2006.04768

Хочется написать про свежий Performer, но пожалуй стоит перед ним написать про Linformer.

Это всё из серии про уменьшить квадратичную сложность полного механизма внимания в трансформере. Линформер, очевидно по названию, уменьшает сложность до линейной и по времени и по месту. За последние полгода таких работ уже несколько, недавний Big Bird (https://www.group-telegram.com/vn/gonzo_ML.com/381) из свежего, или чуть более ранняя работа с многообещающим названием “Transformers are RNNs” (https://arxiv.org/abs/2006.16236).

Разберём Linformer.

Идея в общем проста — заменим полную матрицу внимания на низкоранговую аппроксимацию. Авторы исходят из наблюдения, что self-attention низкоранговый. Для этого они анализируют спектр матрицы и утверждают, что особенно в верхних слоях, больше информации сконцентрировано в наибольших сингулярных значениях. И грубо говоря, считаем SVD для матрицы внимания и оставляем только k сингулярных значений (например, 128).

SVD только дорого считать на каждый чих, поэтому делаем проще, вводим две линейные проекции для K и V (Q не трогаем) перед расчётом внимания, так что в итоге считать придётся меньше. Оригинальные размерности n*d матрицы ключей и значений конвертятся в k*d и дальше внимание уже скейлится линейно, получается матрица внимания n*k вместо n*n.

Для пущей оптимизации эти матрицы проекций (E и F) можно ещё и пошарить между головами или слоями.

В экспериментах получают для k=128 качество как у трансформера с n=512, а для k=256 сравнимо с n=1024. И шаринг тоже работает, даже если шарить матрицы на все слои (то есть вообще одна матрица E на всю сеть).

Ну в общем работает вроде как, качество норм. Получают качество сравнимое с BERT’ом или RoBERTa, но при в 4 раза меньшем k. Плюс всё получается быстрее и памяти жрёт меньше.



group-telegram.com/gonzo_ML/397
Create:
Last Update:

Linformer: Self-Attention with Linear Complexity
Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, Hao Ma
Статья: https://arxiv.org/abs/2006.04768

Хочется написать про свежий Performer, но пожалуй стоит перед ним написать про Linformer.

Это всё из серии про уменьшить квадратичную сложность полного механизма внимания в трансформере. Линформер, очевидно по названию, уменьшает сложность до линейной и по времени и по месту. За последние полгода таких работ уже несколько, недавний Big Bird (https://www.group-telegram.com/vn/gonzo_ML.com/381) из свежего, или чуть более ранняя работа с многообещающим названием “Transformers are RNNs” (https://arxiv.org/abs/2006.16236).

Разберём Linformer.

Идея в общем проста — заменим полную матрицу внимания на низкоранговую аппроксимацию. Авторы исходят из наблюдения, что self-attention низкоранговый. Для этого они анализируют спектр матрицы и утверждают, что особенно в верхних слоях, больше информации сконцентрировано в наибольших сингулярных значениях. И грубо говоря, считаем SVD для матрицы внимания и оставляем только k сингулярных значений (например, 128).

SVD только дорого считать на каждый чих, поэтому делаем проще, вводим две линейные проекции для K и V (Q не трогаем) перед расчётом внимания, так что в итоге считать придётся меньше. Оригинальные размерности n*d матрицы ключей и значений конвертятся в k*d и дальше внимание уже скейлится линейно, получается матрица внимания n*k вместо n*n.

Для пущей оптимизации эти матрицы проекций (E и F) можно ещё и пошарить между головами или слоями.

В экспериментах получают для k=128 качество как у трансформера с n=512, а для k=256 сравнимо с n=1024. И шаринг тоже работает, даже если шарить матрицы на все слои (то есть вообще одна матрица E на всю сеть).

Ну в общем работает вроде как, качество норм. Получают качество сравнимое с BERT’ом или RoBERTa, но при в 4 раза меньшем k. Плюс всё получается быстрее и памяти жрёт меньше.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/397

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion. Stocks closed in the red Friday as investors weighed upbeat remarks from Russian President Vladimir Putin about diplomatic discussions with Ukraine against a weaker-than-expected print on U.S. consumer sentiment. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from vn


Telegram gonzo-обзоры ML статей
FROM American