Telegram Group & Telegram Channel
Про изменение найма в рекомендательных системах🐸

Уже 2.5 года я занимаюсь рекомендательными системами и очень интересно наблюдать как меняестя найм за такое короткое время.
Вот немного временных отсечек:

Весна 2022
Работал в сбере в классическом мл и хочу менять работу. Хорошо рассказываю про бустинги, обрабтоку данных. В это время закончил первый семестр MADE и уверенно чувсвтую себя на собеседованиях по лайвкодингу и NLP.
По итогу 2 месяцев поиска работы и какого-то неимоверного количества собеседований получаю офферы в:
- ДомКлик - рекомендации
- Озон - рекомендации
- Еаптека - классический мл
- Яндекс - команда занималась рекламой вроде, деталей не помню, но помню, что лид не понравился и решил не рассматривать

При этом мои знания по рекомендательным системам около нуля😄

Сентябрь 2023
Уже накопил 1.5 года опыта работы с рекомендательными системами, уверенно себя чувствовал в около млопсовом направлении. И в целом искал вакансии по рексису. Вот что получилось через 2 месяца:
- WB - рекомендации + mlops
- Циан - классик мл
- Яндекс плюс - классик мл
- Дзен - рекомендации
- X5 - классический мл
- Rubbles - классический мл

Самое смешное, что про АЛС или как работает pairwise boosting я очень плохо знал и мое математическое понимание рекомендаций заканчивалось на map и ndcg. Важно заметить, что понимание устройства рексиса озона у меня было хорошее с точки зрения архитектуры, хоть я и не мог объяснить большую часть алгоритмов.

Здесь все секции по рекомендациям без проблем проходились, кроме Т-Банка. Там меня жестко разбомбили вопросами про архитектуру ALS, работу бустингов и нейро подходы. И там я понял, что мне еще очень много нужно выучить.

Декабрь 2024
Я не меняю работу, но мои ученики активно ходят по собеседованиям и вот, что я наблюдаю:
Намного жестче спрашивают про архитектуру рекомендаций. Спрашивают, что под капотом у разных методов, какие методы сам знаешь. Смотрят на то, насколько хорошо умеешь дизайнить рексис (это и раньше спрашивали, но поменьше)
И вакансий как будто стало сильно больше, чем раньше.

Видно что рынок рексиса растет и со временем критерии найма тоже растут. Будем смотреть, что будет дальше🙃

PS прикладываю таблички по компаниям, где проходил собесы в 2022 и 2023 годах

Раскатываем ML кабины



group-telegram.com/ml_cabin_destroyers/13
Create:
Last Update:

Про изменение найма в рекомендательных системах🐸

Уже 2.5 года я занимаюсь рекомендательными системами и очень интересно наблюдать как меняестя найм за такое короткое время.
Вот немного временных отсечек:

Весна 2022
Работал в сбере в классическом мл и хочу менять работу. Хорошо рассказываю про бустинги, обрабтоку данных. В это время закончил первый семестр MADE и уверенно чувсвтую себя на собеседованиях по лайвкодингу и NLP.
По итогу 2 месяцев поиска работы и какого-то неимоверного количества собеседований получаю офферы в:
- ДомКлик - рекомендации
- Озон - рекомендации
- Еаптека - классический мл
- Яндекс - команда занималась рекламой вроде, деталей не помню, но помню, что лид не понравился и решил не рассматривать

При этом мои знания по рекомендательным системам около нуля😄

Сентябрь 2023
Уже накопил 1.5 года опыта работы с рекомендательными системами, уверенно себя чувствовал в около млопсовом направлении. И в целом искал вакансии по рексису. Вот что получилось через 2 месяца:
- WB - рекомендации + mlops
- Циан - классик мл
- Яндекс плюс - классик мл
- Дзен - рекомендации
- X5 - классический мл
- Rubbles - классический мл

Самое смешное, что про АЛС или как работает pairwise boosting я очень плохо знал и мое математическое понимание рекомендаций заканчивалось на map и ndcg. Важно заметить, что понимание устройства рексиса озона у меня было хорошее с точки зрения архитектуры, хоть я и не мог объяснить большую часть алгоритмов.

Здесь все секции по рекомендациям без проблем проходились, кроме Т-Банка. Там меня жестко разбомбили вопросами про архитектуру ALS, работу бустингов и нейро подходы. И там я понял, что мне еще очень много нужно выучить.

Декабрь 2024
Я не меняю работу, но мои ученики активно ходят по собеседованиям и вот, что я наблюдаю:
Намного жестче спрашивают про архитектуру рекомендаций. Спрашивают, что под капотом у разных методов, какие методы сам знаешь. Смотрят на то, насколько хорошо умеешь дизайнить рексис (это и раньше спрашивали, но поменьше)
И вакансий как будто стало сильно больше, чем раньше.

Видно что рынок рексиса растет и со временем критерии найма тоже растут. Будем смотреть, что будет дальше🙃

PS прикладываю таблички по компаниям, где проходил собесы в 2022 и 2023 годах

Раскатываем ML кабины

BY Раскатываем ML кабины





Share with your friend now:
group-telegram.com/ml_cabin_destroyers/13

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. For tech stocks, “the main thing is yields,” Essaye said. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights.
from vn


Telegram Раскатываем ML кабины
FROM American