Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML



group-telegram.com/reliable_ml/134
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 1

Этой заметкой мы хотели бы начать серию постов, посвященную подготовке данных.

Качество ML-моделей определяется качеством данных, на которых они обучаются. В этой серии постов мы будем говорить о табличных данных. Хотя в целом выводы и идеи можно адаптировать не только к табличкам, но и к текстам, звукам, картинкам и последовательностям событий (логам транзакций).

Что мы имеем в виду под необычными данными

Данные могут содержать примеры, нехарактерные для исследуемого распределения: выбросы или аномалии. Выявление и последующее удаление/трансформация таких точек из набора данных позволяет повысить качество работы модели.

Чаще всего термины выброс (outlier) и аномалия (anomaly) используют взаимозаменяемо (Aggarwal, 2016). А некоторые авторы - например, в лекциях MIT 2023 г. по Data-Centric AI - разделяют задачу выявления выбросов (поиск нетипичных точек в уже имеющихся данных) и детекции аномалий (выявление нетипичных точек в новых данных). Для практики также важна детекция новизны (novelty detection) [3] [4] - выявление нового класса примеров, не представленных в обучающей выборке. О последней хорошо рассказывают в своих лекциях А. Дьяконов и Stefan Buuren.

Откуда они появляются

- Ошибки. Ошибки сенсора, отказы оборудования, ошибки фиксации данных.
- Точки из другого распределения. Например, при анализе стоимости торговой недвижимости всплыли нетипично дорогие сделки с площадью 1 кв. м. - аренда места под банкоматы. Ценообразование в этом сегменте другое, из набора данных для анализа торговой недвижимости их стоит исключить.
- Редкие случаи из интересующего нас распределения - необычные результаты, которые не похожи на остальные данные, но их нельзя игнорировать. Например, на медосмотре нам может попасться пациент с очень редким пульсом, но с совершенно здоровым сердцем.

Что с ними делать

Чаще всего необычные данные удаляют. Так поступают, если выбросы не несут важной информации. Но иногда необычные данные - просто редкие примеры интересующего нас распределения. Особенно выгодные клиенты, сложные редкие ситуации, или случаи использования, пропущенные при постановке задачи. В таких случаях можно:

- Добавить дополнительный признак - “редкий случай”
- Ограничивать значение (обрезать аномально высокие значения, увеличить аномально низкие и т.д.)
- Восстановить наиболее вероятное истинное значение (data imputation)

Удаление необычных данных решает проблему с обучением модели, но никак не помогает, когда такие необычные данные приходят на этапе инференса (предсказания). И тут ограничение значения или импутация позволяет модели выдавать более-менее осмысленный результат.

В следующих постах цикла мы поговорим о том, как выявлять и анализировать выбросы и закончим формулировкой фреймворка по работе с выбросами - на основе примеров из практики.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/134

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from vn


Telegram Reliable ML
FROM American