Telegram Group & Telegram Channel
🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/rybolos_channel/1309
Create:
Last Update:

🌸Больше языков для LLM🌸
#nlp #про_nlp

Huggingface в поиске контрибьюторов носителей языков!
Корпус FineWeb на 15 трлн токенов теперь ждёт большое расширение на 1000+ языков 🎉

🟣Сколько языков сейчас представлены в практике моделирования языка?

Если считать, что в целом живых языков 6-7 тысяч,
— в базе Ethnologue 7164
— суммарно во всех LLM работах упоминается примерно 1500 языков (в основном за счет работ NLLB и Towards MT for next 1000 languages)
— у звучащей речи чуть лучше: 4000 языков, но у 70% из них меньше чем 2 часа записей (за счет XEUS)

🟣Бутылочное горлышко валидации
Все ресурсы, которые так или иначе языки описывают, можно расположить на 2 осях координат: их качество и их пригодность для ML-применений. Окажется, что наиболее доступные и пригодные для предобучения моделей корпуса (CommonCrawl, его вариации) в то же время оказываются и наименее качественными.

Причина тому — автоматическое определение языка (см fasttext)  невозможность ручной валидации. Автоматические быстрые классификаторы как правило могут с высоким уровнем надежности определить не более 200 языков, тогда как большинство языков оказывается в большой куче "мусора"  — наименее надежно атрибутированных данных.

Бутылочное горлышко для того, чтобы побороть валидацию на большом объеме данных — это наличие сообщества носителей языков, которые бы активно контрибьютили и помогали улучшить как классификаторы, так и способы оценки качества получаемых языковых моделей.

Я уже несколько раз рассказывала про ситуацию с многоязычными данными, и даже несколько раз за этот год меняла слайды — так быстро меняется ситуация! И сегодня даже в лучшую сторону.

🟣Инициатива HuggingFace

Помимо расширения корпуса FineWeb, HuggingFace ищет волонтеров и носителей языка, чтобы расширить именно процедуру многоязычной оценки языковых моделей.
Новая инициатива — FineTasks — объединяет 4 стандартных бенчмарк-формата:

— Машинное чтение: Понимание предоставленного контекста и ответы на вопросы на его основе.
— Общие знания: Ответы на вопросы о фактах из различных областей без дополнительного контекста.
— Понимание естественного языка (NLU): Понимание семантики предоставленного ввода.
— Рассуждения на основе здравого смысла: Демонстрация способности выполнять простые рассуждения, требующие воплощенных знаний.
— Генеративные задачи: Умение генерировать корректный текст на целевом языке.

Авторы уже собрали 185 задач для 9 языков: поддерживаются
китайский, французский, арабский, русский, тайский, хинди, турецкий, суахили и телугу.


Цель для полного бенчмарка — как минимум 50 языков из разных семей, ареалов и с разной письменностью.

Ну и... ждём большой новый многоязычный корпус с открытой лицензией!

Куда контрибьютить?
🟣 Контрибьютить новые задания и языки можно здесь в шаблоне
🟣Мини-гайд
🟣Блог HF

BY Kali Novskaya




Share with your friend now:
group-telegram.com/rybolos_channel/1309

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. The original Telegram channel has expanded into a web of accounts for different locations, including specific pages made for individual Russian cities. There's also an English-language website, which states it is owned by the people who run the Telegram channels. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. But Kliuchnikov, the Ukranian now in France, said he will use Signal or WhatsApp for sensitive conversations, but questions around privacy on Telegram do not give him pause when it comes to sharing information about the war.
from vn


Telegram Kali Novskaya
FROM American