Telegram Group & Telegram Channel
Cut Your Losses in Large-Vocabulary Language Models
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy

Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.

Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).

При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.

Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.

Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.

По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.

Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.

Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:

from cut_cross_entropy.transformers import cce_patch

model = ...
model = cce_patch(model)


После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.



group-telegram.com/senior_augur/349
Create:
Last Update:

Cut Your Losses in Large-Vocabulary Language Models
Статья: https://arxiv.org/abs/2411.09009
Рецензии: https://openreview.net/forum?id=E4Fk3YuG56
Код: https://github.com/apple/ml-cross-entropy

Статья про оптимизацию памяти при подсчёте функции потерь и её ближайших градиентов при обучении языковых моделей. Основной механизм — модифицированная реализация перекрёстной энтропии, Cut Cross-Entropy (CCE). Авторы берут ровно ту же оптимизацию, которая используется в Flash Attention (поблочное вычисление в кэше GPU), но применяют её к последнему слою и последнему софтмаксу.

Последний шаг при предсказании следующего токена — линейный слой и софтмакс. На каждом шаге генерации у нас есть вектор E с последнего слоя трансформера, мы умножаем его на матрицу C, получаем логиты в ℝ^|V|, для каждого логита считаем экспоненту и делим на сумму всех логитов из всего словаря. Так для каждого токена получаем вероятность, число в отрезке [0, 1]. Функция потерь при обучении — логарифм вероятности правильного токена (с минусом). Нас интересует только правильный токен, и только его логит нам нужен в числителе софтмакса. Логарифм в лоссе гасит экспоненту в числителе. Вычисление раскладывается на две части: вычисление логита правильного токена и вычисление слагаемого нормализации по E и всем столбцам C (логарифм суммы экспонент).

При обучении мы можем считать всё параллельно для всех токенов, поэтому там уже не вектор E, а матрица E.

Для вычисления логитов правильных токенов авторы выгружают блоки релевантных столбцов C и блоки E в кэш, считают там скалярное произведение, и выгружают назад в основную память только финальный результат. Вычисление логарифма суммы экспонент гораздо хитрее, как и вычисление его градиентов, но концепция та же.

Кроме собственно оптимизаций с кэшом, используется тот факт, что большинство значений на выходе софтмакса "плохие", то есть очень близкие к нулю. Из-за ограниченной точности чисел с плавающей точкой, "плохие" значения ни на что не влияют при использовании в слагаемом нормализации. И для них авторы предлагают просто не считать градиенты. Вторая оптимизация такого рода — сортировка словаря по средним логитам, чтобы токены с "плохими" логитами попадали в один блок, и можно было такие блоки полностью пропускать.

По классификации в прошлом посте — это AG метод, полезен только при обучении. Есть и древние альтернативы, да хотя бы иерархический софтмакс или адаптивный софтмакс.

Экспериментально для Мистраля Немо удалось уменьшить память на лосс+градиенты с 8 Гб до 1.3 Гб, что лучше, чем в Liger Kernel. Аналогичная (и иногда даже более существенная) экономия памяти есть и для других моделей.

Потрогать можно через их библиотеку и патчинг модели. То есть вы делаете вот такое:


from cut_cross_entropy.transformers import cce_patch

model = ...
model = cce_patch(model)


После этого лосс и градиенты будут считаться как в статье. Но логиты не будут возвращаться, потому что они не материализуются в принципе.

BY Старший Авгур


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/senior_augur/349

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. As a result, the pandemic saw many newcomers to Telegram, including prominent anti-vaccine activists who used the app's hands-off approach to share false information on shots, a study from the Institute for Strategic Dialogue shows. Perpetrators of such fraud use various marketing techniques to attract subscribers on their social media channels.
from vn


Telegram Старший Авгур
FROM American