Notice: file_put_contents(): Write of 8475 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 4096 of 12571 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1943 -
Telegram Group & Telegram Channel
Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)

Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?

Шаг 1: вкладываем Σ в R^{N+n} при N > n.

Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности
[Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.

Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением).
[На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит.
Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].

Если такого кобордизма нет — успех, наша сфера экзотическая.
Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ.
[Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]

Шаг 4: несколько вариантов в зависимости от n.
а) n чётно. Тогда сфера стандартная.
б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная.
в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая.
[в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.]
г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.

...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).

P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений
S^3 -> Σ -> S^4.
С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений
D^4 -> P -> S^4.



group-telegram.com/sweet_homotopy/1943
Create:
Last Update:

Доказательства всегда в некотором смысле "конструктивны": они дают "алгоритм", просто не все шаги можно быстро проделать на практике. (шаги, связанные с аксиомой выбора, например). Интересно расписать такой план действий. Вот как распознать экзотическую сферу? (в соответствии с вычислением количества гладких структур на сферах, по Керверу-Милнору)

Входные данные: гладкое n-мерное многообразие Σ, гомеоморфное стандартной сфере. Диффеоморфно ли оно стандартной сфере?

Шаг 1: вкладываем Σ в R^{N+n} при N > n.

Шаг 2: строим нормальное оснащение на Σ, то есть N линейно независимых векторных полей на Σ, перпендикулярных поверхности
[Нетривиальный факт: такое оснащение существует. Его можно строить через теорию препятствий; препятствие ровно одно, и оно всегда оказывается равно нулю.] Мы получили оснащённое подмногообразие коразмерности N.

Шаг 3: проверяем, существует ли оснащённый кобордизм между подмногообразием Σ (с нашим нормальным оснащением) и стандартной сферой S^n, стандартно вложенной в R^{N+n} (возможно, с нетривиальным нормальным оснащением).
[На другом языке: по Понтрягину-Тому, нашему нормально оснащённому подмногообразию соответствует отображение S^{N+n} -> S^N, то есть элемент в n-ой стабильной гомотопической группе сфер. Этот элемент либо лежит в образе J-гомоморфизма (т.е. кратен некоторому явному элементу, связанному с ортогональной группой), либо не лежит.
Ещё одна точка зрения: перебираем всевозможные оснащения на Σ и проверяем, будет ли хоть одно из них оснащённо кобордантно нулю].

Если такого кобордизма нет — успех, наша сфера экзотическая.
Пусть такой кобордизм есть. Это значит: можно взять оснащённую связную сумму Σ и сферы так, что получится оснащённое многообразие, кобордантное нулю. Итог: получили оснащённое многообразие P, такое что ∂P=Σ.
[Оснащение на Σ теперь не такое, как раньше, но оно нас больше не интересует.]

Шаг 4: несколько вариантов в зависимости от n.
а) n чётно. Тогда сфера стандартная.
б) n=4k+1, но не 13,29,61,125. Тогда сфера стандартная.
в) n=13,29,61 или 125. Тогда надо посчитать инвариант Кервера многообразия P (то есть Арф-инвариант квадратичной формы на H^{2k+1}(P;Z/2), которая возникает из умножения в когомологиях). Если Арф-инвариант нулевой — сфера стандартная, иначе экзотическая.
[в пункте б) тоже надо бы посчитать инвариант Кервера. Но, если верить Хиллу—Хопкинсу—Рэвенелу, он равен нулю.]
г) n=4k-1. Тогда надо посчитать сигнатуру многообразия P (то есть сигнатуру квадратичной формы на H^{2k}(P;Q), которая возникает из умножения в когомологиях). Если сигнатура делится на некоторое явно выписываемое число, кратное числителю n-ого числа Бернулли — сфера стандартная, иначе экзотическая.

...интересно, можно ли как-нибудь переставить шаги (сначала разобраться с сигнатурой/арф-инвариантом, а потом уже решать гомотопическую задачу).

P. S. Кстати, Милнор строил первые экзотические сферы в размерности n=7. Там J-гомоморфизм сюръективен, поэтому Шаг 3 можно "пропустить": кобордизм всегда существует. (На самом деле пропускать нельзя: на Шаге 4 надо считать сигнатуру заклеивающей плёнки, построенной на Шаге 3.) Сферы Милнора — это тотальные пространства расслоений
S^3 -> Σ -> S^4.
С шагом 3 у Милнора не было проблем, многообразия P — это тотальные пространства ассоциированных расслоений
D^4 -> P -> S^4.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1943

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Apparently upbeat developments in Russia's discussions with Ukraine helped at least temporarily send investors back into risk assets. Russian President Vladimir Putin said during a meeting with his Belarusian counterpart Alexander Lukashenko that there were "certain positive developments" occurring in the talks with Ukraine, according to a transcript of their meeting. Putin added that discussions were happening "almost on a daily basis." "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. You may recall that, back when Facebook started changing WhatsApp’s terms of service, a number of news outlets reported on, and even recommended, switching to Telegram. Pavel Durov even said that users should delete WhatsApp “unless you are cool with all of your photos and messages becoming public one day.” But Telegram can’t be described as a more-secure version of WhatsApp. But because group chats and the channel features are not end-to-end encrypted, Galperin said user privacy is potentially under threat.
from vn


Telegram сладко стянул
FROM American