Notice: file_put_contents(): Write of 2158 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 8192 of 10350 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 сладко стянул | Telegram Webview: sweet_homotopy/2035 -
Замыкается петля и в середине неё я Доказательство утверждения 1: Если X односвязно и букет сфер, то ΩX — это ΩΣ(букет сфер). По теореме Хилтона—Милнора, такое пространство — это произведение пространств вида ΩΣ(смэш сфер) = ΩS^n для некоторого n.
Доказательство утверждения 2: Если X — произведение сфер и петель на сферах, то по формуле для надстройки над произведением ΣX — это букет надстроек над пространствами вида "смэш сфер и петель над сферами". Мы хотим доказать, что каждая такая надстройка — букет сфер.
Действительно: ΣΩS^n = ΣΩΣS^{n-1} = S^n v S^{2n-1} v ... из расщепления Джеймса. Поочерёдно засовывая надстройку в каждый сомножитель вида ΩS^n в смэше, можно с помощью сигм истребить всех омег. В итоге останется букет надстроек над смэшем букетов сфер, а это букет сфер.
Доказательство утверждения 5: действительно, на ретракте H-пространства возникает структура H-пространства. Значит, если ΩY∈ P+ содержит сомножитель S^n, то на S^n возникает структура H-пространства. Адамс доказал, что при n≠1,3,7 так не бывает. Доказательство утверждения 6: Если ΩΣX ∈ P+, то ΣΩΣX ∈ W по утверждению 2. При этом ΣX — ретракт пространства ΣΩΣX по расщеплению Джеймса, а W замкнуто относительно ретрактов по утверждению 3. Значит, ΣX∈ W. Теперь ΩΣX ∈ P- по утверждению 1.
Замыкается петля и в середине неё я Доказательство утверждения 1: Если X односвязно и букет сфер, то ΩX — это ΩΣ(букет сфер). По теореме Хилтона—Милнора, такое пространство — это произведение пространств вида ΩΣ(смэш сфер) = ΩS^n для некоторого n.
Доказательство утверждения 2: Если X — произведение сфер и петель на сферах, то по формуле для надстройки над произведением ΣX — это букет надстроек над пространствами вида "смэш сфер и петель над сферами". Мы хотим доказать, что каждая такая надстройка — букет сфер.
Действительно: ΣΩS^n = ΣΩΣS^{n-1} = S^n v S^{2n-1} v ... из расщепления Джеймса. Поочерёдно засовывая надстройку в каждый сомножитель вида ΩS^n в смэше, можно с помощью сигм истребить всех омег. В итоге останется букет надстроек над смэшем букетов сфер, а это букет сфер.
Доказательство утверждения 5: действительно, на ретракте H-пространства возникает структура H-пространства. Значит, если ΩY∈ P+ содержит сомножитель S^n, то на S^n возникает структура H-пространства. Адамс доказал, что при n≠1,3,7 так не бывает. Доказательство утверждения 6: Если ΩΣX ∈ P+, то ΣΩΣX ∈ W по утверждению 2. При этом ΣX — ретракт пространства ΣΩΣX по расщеплению Джеймса, а W замкнуто относительно ретрактов по утверждению 3. Значит, ΣX∈ W. Теперь ΩΣX ∈ P- по утверждению 1.
The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. The Securities and Exchange Board of India (Sebi) had carried out a similar exercise in 2017 in a matter related to circulation of messages through WhatsApp. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War."
from vn