Notice: file_put_contents(): Write of 3440 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 11632 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
Системный Блокъ | Telegram Webview: sysblok/627 -
Telegram Group & Telegram Channel
Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.



group-telegram.com/sysblok/627
Create:
Last Update:

Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.

BY Системный Блокъ




Share with your friend now:
group-telegram.com/sysblok/627

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

NEWS On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. "The inflation fire was already hot and now with war-driven inflation added to the mix, it will grow even hotter, setting off a scramble by the world’s central banks to pull back their stimulus earlier than expected," Chris Rupkey, chief economist at FWDBONDS, wrote in an email. "A spike in inflation rates has preceded economic recessions historically and this time prices have soared to levels that once again pose a threat to growth." The news also helped traders look past another report showing decades-high inflation and shake off some of the volatility from recent sessions. The Bureau of Labor Statistics' February Consumer Price Index (CPI) this week showed another surge in prices even before Russia escalated its attacks in Ukraine. The headline CPI — soaring 7.9% over last year — underscored the sticky inflationary pressures reverberating across the U.S. economy, with everything from groceries to rents and airline fares getting more expensive for everyday consumers. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from vn


Telegram Системный Блокъ
FROM American