Notice: file_put_contents(): Write of 5565 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50
Warning: file_put_contents(): Only 4096 of 9661 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50 AbstractDL | Telegram Webview: abstractDL/152 -
А что будет, если учить нейронную сеть понимать текст по скриншотам? Оказалось, что такая модель будет работать ничуть не хуже, чем BERT, и, к тому же, ещё и понимать мультсимвольный шифр: ᗪ🝗🝗尸 ㇄🝗闩尺𝓝讠𝓝Ꮆ.
Авторы предложили вместо дискретных токенов предсказывать пиксели буквенных символов. Подход очень похож на смесь BERT и ViT-MAE — сначала обучающие тексты рендерятся в изображение, а затем маскируются и восстанавливаются разные его куски. Этот подход позволил избавиться от так называемого vocabulary bottleneck — то есть нет необходимости хранить огромное количество эмбеддингов для десятков тысяч токенов и вычислять дорогостоящий софтмакс.
В итоге, модель демонстрирует сравнимый с бертом перформанс и гораздо более устойчива к adversarial атакам.
P.S. На картинке показана работа промежуточного чекпоинта модели, когда она научилась декодить замаскированный текст, но ещё не до конца.
А что будет, если учить нейронную сеть понимать текст по скриншотам? Оказалось, что такая модель будет работать ничуть не хуже, чем BERT, и, к тому же, ещё и понимать мультсимвольный шифр: ᗪ🝗🝗尸 ㇄🝗闩尺𝓝讠𝓝Ꮆ.
Авторы предложили вместо дискретных токенов предсказывать пиксели буквенных символов. Подход очень похож на смесь BERT и ViT-MAE — сначала обучающие тексты рендерятся в изображение, а затем маскируются и восстанавливаются разные его куски. Этот подход позволил избавиться от так называемого vocabulary bottleneck — то есть нет необходимости хранить огромное количество эмбеддингов для десятков тысяч токенов и вычислять дорогостоящий софтмакс.
В итоге, модель демонстрирует сравнимый с бертом перформанс и гораздо более устойчива к adversarial атакам.
P.S. На картинке показана работа промежуточного чекпоинта модели, когда она научилась декодить замаскированный текст, но ещё не до конца.
Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. "Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. False news often spreads via public groups, or chats, with potentially fatal effects. And indeed, volatility has been a hallmark of the market environment so far in 2022, with the S&P 500 still down more than 10% for the year-to-date after first sliding into a correction last month. The CBOE Volatility Index, or VIX, has held at a lofty level of more than 30.
from ye