Telegram Group & Telegram Channel
Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰



group-telegram.com/ansi_logic/103
Create:
Last Update:

Перекроить круг в квадрат пытались ещё древние греки, и только спустя сотни лет выяснилось, что циркулем и линейкой сделать это невозможно (если коротко, то причина в трансцендентности числа пи). "Тогда ладно" - сказал Тарский и поставил такой вопрос: можно ли порезать круг на конечное число кусочков и собрать из них квадрат? Не спешите давать отрицательный ответ на этот вопрос, потому что:
- теорема Бойяи-Гервина утверждает, что если взять любые многоугольники равной площади, то один из них можно порезать на конечное число кусочков и собрать другой;
- можно разрезать круг на 2 (всего 2!) кусочка, один из них гомотетично растянуть и собрать квадрат (очень красивая задача, на мой взгляд. впрочем, этот же трюк работает с любыми 2 подмножествами плоскости, имеющими непустую внутренность);
- парадокс Банаха-Тарского: можно разрезать шар на 5 кусочков и собрать два таких же шара. Хотя аналогичная конструкция на плоскости невозможна (квадрат должен быть той же площади, что и круг), это наводит на мысль, ну мало ли что бывает.

Если разрешить резать только по прямым и дугам окружностей, то перекроить круг в квадрат не выйдет (это почти очевидно). Разрешаем большее: можно резать по любым "хорошим" (хороший значит жордановый) кривым. Тоже не получится, доказать уже сильно сложнее. Если приплести аксиому выбора, то порезать удастся на примерно 10^40 кусков. Неконструктивно, но порезали! Вот обзорная статья 2003 года про это всё.

Удивительно, но в 2022 году оказалось, что можно порезать круг, чтобы собрать потом квадрат, вполне себе конструктивно на БОРЕЛЕВСКИЕ КУСКИ!!! (А если кусок борелевский, значит, он измеримый.) Вот это построение. Оч сложно, но какова красота 🥰

BY Анси логика


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/ansi_logic/103

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

False news often spreads via public groups, or chats, with potentially fatal effects. "The argument from Telegram is, 'You should trust us because we tell you that we're trustworthy,'" Maréchal said. "It's really in the eye of the beholder whether that's something you want to buy into." Sebi said data, emails and other documents are being retrieved from the seized devices and detailed investigation is in progress. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from ye


Telegram Анси логика
FROM American