Telegram Group & Telegram Channel
🐦 Твиттер выложил код со своими рекомендациями для вкладки For You.

Ссылки
Статья в блоге твиттера
Основной код
Код ML
Аудио обсуждение от твиттера (пока не слушал)

Пролистал
репозиторий, твиттер, комментарии на HN и решил поделиться тем, что нашел.
Важный момент – меня интересуют более практические моменты, которые можно будет применить в своей работе.

Поэтому сразу подборка хайпа, чтобы потом про него не писать:
+ Смотрят на метрики трафика и взаимодействия по авторам во время АБ тестов: Маск, демократы/республиканцы, “power users” – захардкоженный список? Многие захейтили твиттер, но я проблем не вижу, стандартная практика, чтобы нечаянно не уронить трафик некоторым авторам.
UPD:
Кажется, что этот кусок в спешке потерли
за ссылку спасибо @oktai15


+ Бустят авторов с синей галочкой (а с 15 апреля в рекомендациях от не-подписок оставят только их)

+
Много чего не выложили (модели, данные, еще по лицензии нельзя использовать код для коммерческих целей), зато есть описание, код некоторых модулей и сопроводительные README.md

🐦 Обзор.

В твиттере есть две ленты:
Following
– хронологическая лента ваших подписок.
For you - умная лента. Про нее мы и будем говорить. Задача этой ленты с одной стороны показывать интересные посты ваших подписок (In-Network) + показывать контент не подписок для exploration (Out-Network). Соотношение 50/50. Такое соотношение звучит, как бейзлайн. Интересно, это действительно самое оптимальное соотношение по АБ или просто забили?

Термины для удобства:
+ Подписки – аккаунты на которые я подписан.
+ Эмбеддинг – вектор (набор чисел), отражающий пост/автора/юзера.

В репозитории есть схема и таблица описание основных модулей. Советую посмотреть.

Общая схема рекомендаций стандартная:
Генерация кандидатов -> Ранжирование -> Пост-обработка эвристиками.

Генерация кандидатов.
В случае твиттов из подписок (In-Network source) -> берем ваши подписки -> генерим фичи уровня юзер – автор -> скорим простым ранкером (модуль называется RealGraph модель GBDT) на вероятность взаимодействия.
Потом берем последние посты топа предсказанных авторов и скорим посты подписок early bird (модель ЛогРег).
Это основной генератор постов из подписок. Отсюда получаем ~750 постов.

Out-network source (посты от не подписок).
1. Социальный граф.
1. Твитты, с которым взаимодействовали мои подписки.
2. Колаборитвная фильтрация. Лайки юзеров, которые лайкают похожие со мной посты.
2. Эмбеддинги.
1. Разреженные эмбеддинги от модели SimClusters. Юзеры и твиты отображаются в пространство “сообществ”. Статью не читал, пока не оч понял как все устроено.
2. Эмбеддинги от модели TwinHW размерность ~200. Обучают на графах юзер-автор, таргет подписка и юзер-твит, таргет взаимодействие. На инференсе смотрим близость юзера к твиту, юзера к авторам. Статья

Ранжирование.
После генерации кандидатов мы получаем ~1,500 твиттов, которые могут быть нам интересны. Дальше работает ранкер (сеть с 48Mln параметров, архитектура: parallel masknet Задача ранкера отсортировать эти твиты используя больше признаков (информации).
Код “heavy ranker”

Интересности.
1. Ранкер обучаем на несколько задач. На выходе сигмоиды, предсказываем вероятность разных действий. Список действий тут.
2. Предсказанные вероятности складываем с весами. Максимальный положительный вес – is_replied_reply_engaged_by_author или вероятность, что автор поста ответит на ваш комментарий на его твит. Наиболее отрицательный вес – is_report_tweet_clicked или что вы пожалуетесь на твит.
3. Фичи для обучения ранкера (информация, на основе которой предсказываются вероятности) – в основном счётчики (ожидаемо). Например сколько раз вы лайкали автора за 50 дней. Есть short-term (30min-3days) и long-term (50 days) статистики. Еще заметил, что в название user_author фичей есть версии так, что можно предположить какие фичи постепенно добавляли.



group-telegram.com/c0mmit/42
Create:
Last Update:

🐦 Твиттер выложил код со своими рекомендациями для вкладки For You.

Ссылки
Статья в блоге твиттера
Основной код
Код ML
Аудио обсуждение от твиттера (пока не слушал)

Пролистал
репозиторий, твиттер, комментарии на HN и решил поделиться тем, что нашел.
Важный момент – меня интересуют более практические моменты, которые можно будет применить в своей работе.

Поэтому сразу подборка хайпа, чтобы потом про него не писать:
+ Смотрят на метрики трафика и взаимодействия по авторам во время АБ тестов: Маск, демократы/республиканцы, “power users” – захардкоженный список? Многие захейтили твиттер, но я проблем не вижу, стандартная практика, чтобы нечаянно не уронить трафик некоторым авторам.
UPD:
Кажется, что этот кусок в спешке потерли
за ссылку спасибо @oktai15


+ Бустят авторов с синей галочкой (а с 15 апреля в рекомендациях от не-подписок оставят только их)

+
Много чего не выложили (модели, данные, еще по лицензии нельзя использовать код для коммерческих целей), зато есть описание, код некоторых модулей и сопроводительные README.md

🐦 Обзор.

В твиттере есть две ленты:
Following
– хронологическая лента ваших подписок.
For you - умная лента. Про нее мы и будем говорить. Задача этой ленты с одной стороны показывать интересные посты ваших подписок (In-Network) + показывать контент не подписок для exploration (Out-Network). Соотношение 50/50. Такое соотношение звучит, как бейзлайн. Интересно, это действительно самое оптимальное соотношение по АБ или просто забили?

Термины для удобства:
+ Подписки – аккаунты на которые я подписан.
+ Эмбеддинг – вектор (набор чисел), отражающий пост/автора/юзера.

В репозитории есть схема и таблица описание основных модулей. Советую посмотреть.

Общая схема рекомендаций стандартная:
Генерация кандидатов -> Ранжирование -> Пост-обработка эвристиками.

Генерация кандидатов.
В случае твиттов из подписок (In-Network source) -> берем ваши подписки -> генерим фичи уровня юзер – автор -> скорим простым ранкером (модуль называется RealGraph модель GBDT) на вероятность взаимодействия.
Потом берем последние посты топа предсказанных авторов и скорим посты подписок early bird (модель ЛогРег).
Это основной генератор постов из подписок. Отсюда получаем ~750 постов.

Out-network source (посты от не подписок).
1. Социальный граф.
1. Твитты, с которым взаимодействовали мои подписки.
2. Колаборитвная фильтрация. Лайки юзеров, которые лайкают похожие со мной посты.
2. Эмбеддинги.
1. Разреженные эмбеддинги от модели SimClusters. Юзеры и твиты отображаются в пространство “сообществ”. Статью не читал, пока не оч понял как все устроено.
2. Эмбеддинги от модели TwinHW размерность ~200. Обучают на графах юзер-автор, таргет подписка и юзер-твит, таргет взаимодействие. На инференсе смотрим близость юзера к твиту, юзера к авторам. Статья

Ранжирование.
После генерации кандидатов мы получаем ~1,500 твиттов, которые могут быть нам интересны. Дальше работает ранкер (сеть с 48Mln параметров, архитектура: parallel masknet Задача ранкера отсортировать эти твиты используя больше признаков (информации).
Код “heavy ranker”

Интересности.
1. Ранкер обучаем на несколько задач. На выходе сигмоиды, предсказываем вероятность разных действий. Список действий тут.
2. Предсказанные вероятности складываем с весами. Максимальный положительный вес – is_replied_reply_engaged_by_author или вероятность, что автор поста ответит на ваш комментарий на его твит. Наиболее отрицательный вес – is_report_tweet_clicked или что вы пожалуетесь на твит.
3. Фичи для обучения ранкера (информация, на основе которой предсказываются вероятности) – в основном счётчики (ожидаемо). Например сколько раз вы лайкали автора за 50 дней. Есть short-term (30min-3days) и long-term (50 days) статистики. Еще заметил, что в название user_author фичей есть версии так, что можно предположить какие фичи постепенно добавляли.

BY commit history


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/c0mmit/42

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. Lastly, the web previews of t.me links have been given a new look, adding chat backgrounds and design elements from the fully-features Telegram Web client. During the operations, Sebi officials seized various records and documents, including 34 mobile phones, six laptops, four desktops, four tablets, two hard drive disks and one pen drive from the custody of these persons. "He has kind of an old-school cyber-libertarian world view where technology is there to set you free," Maréchal said. Artem Kliuchnikov and his family fled Ukraine just days before the Russian invasion.
from ye


Telegram commit history
FROM American