От этом сообщил сам Альтман в своем блоге. Он объявил, что работа над версией, включая тестирование, закончена, и что компания начинает работу над деплоем. Модель будет доступна за те же 200 долларов, так что слухи о 2к за подписку оказались неправдой (пока что).
Это не все: в реплаях на вопрос про то, насколько о3-mini лучше o1-pro, Сэм сказал «хуже во многих вещах, но быстрее». А вот полномасштабная o3, по словам CEO, будет гораздо умнее o1-pro, «не говоря уже об о3-pro»
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
o3 – не единственная новость от OpenAI на сегодня. Technology Review сообщает, что компания работает над секретом долголетия
Оказывается, последнее время OpenAI плотно работали со стартапом Retro, в который, кстати, уже несколтко лет основательно инвестирует Альтман. Главная цель Retro – повысить общую продолжительность жизни человека на 10 лет.
TR сообщают, что за год сотрудничества OpenAI с Retro уже разработали модель GPT-4b micro. Ее обучили предлагать способы реинжиниринга факторов белка для повышения эффективности их функций. Уже даже есть первые результаты: в статье написано, что с помощью модели ученым удалось изменить два фактора Яманаки так, что они стали более чем в 50 раз эффективнее.
Сама модель пока недоступна, и еще находится на уровне внутренних демо и тестирования в Retro. Технических деталей тоже немного. Известно только, что GPT-4b micro, также, как и AlphaFold, обучалась на последовательностях белков, но архитектура у нее другая.
Статья: www.technologyreview.com/2025/01/17/1110086/openai-has-created-an-ai-model-for-longevity-science/
Оказывается, последнее время OpenAI плотно работали со стартапом Retro, в который, кстати, уже несколтко лет основательно инвестирует Альтман. Главная цель Retro – повысить общую продолжительность жизни человека на 10 лет.
TR сообщают, что за год сотрудничества OpenAI с Retro уже разработали модель GPT-4b micro. Ее обучили предлагать способы реинжиниринга факторов белка для повышения эффективности их функций. Уже даже есть первые результаты: в статье написано, что с помощью модели ученым удалось изменить два фактора Яманаки так, что они стали более чем в 50 раз эффективнее.
Сама модель пока недоступна, и еще находится на уровне внутренних демо и тестирования в Retro. Технических деталей тоже немного. Известно только, что GPT-4b micro, также, как и AlphaFold, обучалась на последовательностях белков, но архитектура у нее другая.
Статья: www.technologyreview.com/2025/01/17/1110086/openai-has-created-an-ai-model-for-longevity-science/
Forwarded from Data Secrets | Карьера
История о том, как молодой репортер ушел с престижной должности в огромной компании в маленький стартап и стал миллиардером
В 2016 году Джек Кларк занимал довольно высокооплачиваемую должность в Bloomberg. Но однажды он внезапно пришел к руководителю и сказал, что уходит в только что образовавшийся стартап. Тот отговаривал парня и убеждал, что это ужасная идея, но Кларк проигнорировал его и ушел.
Тем стартапом был OpenAI. В нем Джек проработал 4 года, а затем ушел и… стал одним из соучредителей Anthropic.
Сейчас его состояние оценивается в несколько миллиардов долларов.
В 2016 году Джек Кларк занимал довольно высокооплачиваемую должность в Bloomberg. Но однажды он внезапно пришел к руководителю и сказал, что уходит в только что образовавшийся стартап. Тот отговаривал парня и убеждал, что это ужасная идея, но Кларк проигнорировал его и ушел.
Тем стартапом был OpenAI. В нем Джек проработал 4 года, а затем ушел и… стал одним из соучредителей Anthropic.
Сейчас его состояние оценивается в несколько миллиардов долларов.
Внезапно: OpenAI спонсировали EpochAI в создании бенчмарка FrontierMath и имели доступ к данным
Сразу для контекста: FrontierMath был создан недавно (пост) и позиционировался как супер-сложный закрытый математический бенчмарк. Когда он вышел, самые передовые модели набирали на нем порядка 2%. И это именно результатами на этом бенчмарке так хвастались везде и всюду OpenAI, когда представляли o3: она якобы набрала на нем аж 25% (пост).
А теперь оказывается, что OpenAI имели доступ к вопросам и ответам. В этом признались сами EpochAI после того как анонимный пользователь выложил на lesswrong пост, в котором рассказал о том, что FrontierMath спонсировался OpenAI. По его словам, финансовая коммуникация была непрозначной, и даже основная часть сотрудников EpochAI и математики, которые придумывали задачи для бенчмарка, были не в курсе.
EpochAI вину признали, но заявили, что их связывало NDA. Они подтвердили, что OpenAI имеет доступ к большинству задач бенчмарка кроме hold-out сета, но сказали, что между ними и OpenAI есть "устное соглашение о том, что эти данные не будут использоваться для обучения"🤦
Сразу для контекста: FrontierMath был создан недавно (пост) и позиционировался как супер-сложный закрытый математический бенчмарк. Когда он вышел, самые передовые модели набирали на нем порядка 2%. И это именно результатами на этом бенчмарке так хвастались везде и всюду OpenAI, когда представляли o3: она якобы набрала на нем аж 25% (пост).
А теперь оказывается, что OpenAI имели доступ к вопросам и ответам. В этом признались сами EpochAI после того как анонимный пользователь выложил на lesswrong пост, в котором рассказал о том, что FrontierMath спонсировался OpenAI. По его словам, финансовая коммуникация была непрозначной, и даже основная часть сотрудников EpochAI и математики, которые придумывали задачи для бенчмарка, были не в курсе.
EpochAI вину признали, но заявили, что их связывало NDA. Они подтвердили, что OpenAI имеет доступ к большинству задач бенчмарка кроме hold-out сета, но сказали, что между ними и OpenAI есть "устное соглашение о том, что эти данные не будут использоваться для обучения"
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
Data Secrets
Внезапно: OpenAI спонсировали EpochAI в создании бенчмарка FrontierMath и имели доступ к данным Сразу для контекста: FrontierMath был создан недавно (пост) и позиционировался как супер-сложный закрытый математический бенчмарк. Когда он вышел, самые передовые…
То самое устное соглашение OpenAI и EpochAI
Строим рекомендательную систему фильмов на Kaggle
Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
• Разберем имеющиеся данные фильмов с их оценками
• Проведем предобработку данных
• Построим рекомендательную систему на основе машинного обучения
•Проведем расчет и анализ метрик на основе результатов работы модели
🕗Встречаемся 21 января 19:00 по мск
Вебинар будет интересен как новичкам, так и уже опытным специалистам
Зарегистрироваться на бесплатный вебинар
Вы когда-нибудь хотели сделать свою собственную систему рекомендаций фильмов? 🎬
Приходите на бесплатный вебинар, где Савелий Батурин, Senior ML-Engineer и преподаватель курса по ML школы Simulative в прямом эфире покажет как построить рекомендательную систему фильмов на Kaggle.
Что будем делать на вебинаре:
• Разберем имеющиеся данные фильмов с их оценками
• Проведем предобработку данных
• Построим рекомендательную систему на основе машинного обучения
•Проведем расчет и анализ метрик на основе результатов работы модели
🕗Встречаемся 21 января 19:00 по мск
Вебинар будет интересен как новичкам, так и уже опытным специалистам
Зарегистрироваться на бесплатный вебинар
Трансформер научили предсказывать паттерны активности человеческого мозга на 5 секунд вперед
При этом для предсказания нужны данные всего по 21 секунде сканирования 379 областей мозга. В основе – time series трансформер с 8 головами внимания.
На одной точке предсказания модели достигают MSE 0,0013 (для такой задачи это просто вау). Правда после 7 шага ошибки начинают накапливаться по шаблону цепи Маркова, и, таким образом, после пятой секунды прогнозы уже нельзя использовать. Но на этих пяти секундах корреляция >0,85 и, более того, модель очень точно сохраняет функциональные связи между областями мозга.
Исследование, к слову, не просто очень интересное с точки зрения ресерча способностей трансформера (но, кстати, так и до чтения мыслей недалеко), но и имеет большую практическую значимость. Например, в мире очень много пациентов, которые не выдерживают длительные сеансы МРТ, а это первый подход, который, исходя из требуемого количества точек для предсказания и точности прогнозов, действительно имеет шанс на использование.
Статья: Predicting Human Brain States with Transformer
При этом для предсказания нужны данные всего по 21 секунде сканирования 379 областей мозга. В основе – time series трансформер с 8 головами внимания.
На одной точке предсказания модели достигают MSE 0,0013 (для такой задачи это просто вау). Правда после 7 шага ошибки начинают накапливаться по шаблону цепи Маркова, и, таким образом, после пятой секунды прогнозы уже нельзя использовать. Но на этих пяти секундах корреляция >0,85 и, более того, модель очень точно сохраняет функциональные связи между областями мозга.
Исследование, к слову, не просто очень интересное с точки зрения ресерча способностей трансформера (но, кстати, так и до чтения мыслей недалеко), но и имеет большую практическую значимость. Например, в мире очень много пациентов, которые не выдерживают длительные сеансы МРТ, а это первый подход, который, исходя из требуемого количества точек для предсказания и точности прогнозов, действительно имеет шанс на использование.
Статья: Predicting Human Brain States with Transformer
Интересно: издание Axios сообщает, что 30 января Альтман созвал собрание правительства США
Инсайдеры говорят, что на повестке будет «большой прорыв в области ИИ супер-агентов».
😐
Инсайдеры говорят, что на повестке будет «большой прорыв в области ИИ супер-агентов».
Please open Telegram to view this post
VIEW IN TELEGRAM
DeepSeek релизнули веса своей новой ризонинг модели DeepSeek-R1
Напоминаем, что саму модель анонсировали в конце ноября, но все это время была доступна только ее preview версия (пост). Метрик по полноценной R1 пока нет, но учитывая, насколько сильной была превью (к посту прикрепили картинку с ее метриками), ждем чего-то феерического.
Возможно даже, что R1 будет лучше o1, учитывая, что превью версия обгоняла o1-preview на MATH и AIME 2024.
В остальном тех.деталей пока нет, известно только, что в модельке 685 B параметров, а длина цепочек ризонинга скорее всего будет больше 100к токенов. Вместе с R1, кстати, выкатили еще R1-Zero (разница пока неочевидна).
Ждем тех.отчет и метрики!
Напоминаем, что саму модель анонсировали в конце ноября, но все это время была доступна только ее preview версия (пост). Метрик по полноценной R1 пока нет, но учитывая, насколько сильной была превью (к посту прикрепили картинку с ее метриками), ждем чего-то феерического.
Возможно даже, что R1 будет лучше o1, учитывая, что превью версия обгоняла o1-preview на MATH и AIME 2024.
В остальном тех.деталей пока нет, известно только, что в модельке 685 B параметров, а длина цепочек ризонинга скорее всего будет больше 100к токенов. Вместе с R1, кстати, выкатили еще R1-Zero (разница пока неочевидна).
Ждем тех.отчет и метрики!
Ваши задачи требуют мощных вычислительных ресурсов? Локальные мощности не справляются с обучением нейросетей?
immers.cloud предлагает решение:
💰 Экономия: тарифы от 23 рублей/час, оплата только за фактическое время использования
⚡️ Быстрый старт: видеокарты и серверы готовы к работе за пару минут.
📈 Гибкость и масштабируемость: 11 видеокарт на выбор, быстрый старт и масштабирование
🔧 Удобство: готовые образы для ML задач, чтобы не тратить время на настройку
Платформа также предлагает образ Ubuntu 22.04 с предустановленными драйверами, библиотеками CUDA 12.3 и CudNN: с ним можно развернуть поверх него необходимые инструменты для обучения, разработки или работы с нейросетями.
🎁 Для наших подписчиков действует бонус: +20% бонус к пополнению баланса
immers.cloud предлагает решение:
💰 Экономия: тарифы от 23 рублей/час, оплата только за фактическое время использования
⚡️ Быстрый старт: видеокарты и серверы готовы к работе за пару минут.
📈 Гибкость и масштабируемость: 11 видеокарт на выбор, быстрый старт и масштабирование
🔧 Удобство: готовые образы для ML задач, чтобы не тратить время на настройку
Платформа также предлагает образ Ubuntu 22.04 с предустановленными драйверами, библиотеками CUDA 12.3 и CudNN: с ним можно развернуть поверх него необходимые инструменты для обучения, разработки или работы с нейросетями.
🎁 Для наших подписчиков действует бонус: +20% бонус к пополнению баланса
Бенчмарки по R1 от DeepSeek не заставили себя ждать
➖ Перформанс на уровне o1 (не везде, но да). Очень сильные результаты по математике и кодингу.
➖ Модель уже доступна в чате chat.deepseek.com/ и в API. В чате бесплатно 50 сообщений в день, цены на API очень демократичные: 0.55$/M токенов на инпут без промпт кэша и 0.14$/M с ним, аутпут 2.19$/M. Это дешевле всех моделек OpenAI и Anthropic (например, o1 стоит $15.00/M input и $60.00/M output).
➖ Выложили дистиллированные варианты, аж 6 штук. Размеры: 1.5B, 7B, 14B, 32B, 8B, 70B. 32 и 70 на уровне o1-mini, 1.5B аутперформит GPT-4o и Сlaude Sonnet (!)
Ну мед 🍯
Ну мед 🍯
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM
This media is not supported in your browser
VIEW IN TELEGRAM
Буквально все сегодня:
А это, знакомьтесь, Сэм Альтман по-китайски: CEO DeepSeek Лиан Венфенг
Вчера, после релиза R1, он был приглашен на встречу с Ли Цяном, премьер-министром Китая (который является вторым по значимости человеком в Китае после Си Цзиньпина).
Если DeepSeek сделали R1 в условиях ограниченных вычислений и средств, представьте, что они могут сделать с субсидиями Китая.
Человек года 2025 загружается🔵
Вчера, после релиза R1, он был приглашен на встречу с Ли Цяном, премьер-министром Китая (который является вторым по значимости человеком в Китае после Си Цзиньпина).
Если DeepSeek сделали R1 в условиях ограниченных вычислений и средств, представьте, что они могут сделать с субсидиями Китая.
Человек года 2025 загружается
Please open Telegram to view this post
VIEW IN TELEGRAM
❓ Как мощные алгоритмы матричных разложений применяются в рекомендательных системах?
Расскажем на открытом уроке «SVD и ALS на службе рекомендательных систем», посвященному курсу Machine Learning. Advanced
✅ Изучим и применим на практике такие методы как SVD и ALS для построения рекомендательных систем
👉 Регистрация и подробности: https://otus.pw/zcP8O/?erid=2W5zFK8hyUL
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.
Расскажем на открытом уроке «SVD и ALS на службе рекомендательных систем», посвященному курсу Machine Learning. Advanced
✅ Изучим и применим на практике такие методы как SVD и ALS для построения рекомендательных систем
👉 Регистрация и подробности: https://otus.pw/zcP8O/?erid=2W5zFK8hyUL
Реклама. ООО "ОТУС ОНЛАЙН-ОБРАЗОВАНИЕ". ИНН 9705100963.