Notice: file_put_contents(): Write of 1718 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 12288 of 14006 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
gonzo-обзоры ML статей | Telegram Webview: gonzo_ML/176 -
Telegram Group & Telegram Channel
Reformer: The Efficient Transformer
Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya
Статья: https://arxiv.org/abs/2001.04451
Код: https://github.com/google/trax/tree/master/trax/models/reformer

Больше трансформеров, хороших и разных! Łukasz Kaiser, кстати, соавтор оригинальной работы, а также работы про Universal Transformer, да и многого другого по теме (https://scholar.google.ru/citations?hl=en&user=JWmiQR0AAAAJ&sortby=pubdate).

Реформер -- это по сути техническая оптимизация оригинального трансформера, чтобы он занимал меньше памяти и быстрее считался.

Проблема обычного трансформера, что он большой и тяжёлый, плюс сложность механизма внимания квадратичная. Из-за всего этого обучать трансформеры (особенно на длинных последовательностях) становится невозможно без кластера. И даже файнтюнить не всегда можно на одном GPU.

Например, в одной из больших конфигураций трансформера (не из оригинальной работы, а из более навороченной https://arxiv.org/abs/1811.02084, которая конечно не про типичный трансформер, а скорее про историю типа Мегатрона от Нвидии), число параметров в слое может достигать полумиллиарда. И слоёв таких много.

Плюс для обучения надо сохранять активации, плюс feed-forward слои в трансформере ещё большую размерность эмбеддингов имеют.

Соответственно в работе предлагаются три техники для облегчения этих проблем.

1. Reversible layers по типу как здесь https://arxiv.org/abs/1707.04585. Позволяют сократить на хранении активаций в N раз (N -- число слоёв).

2. Работа с активациями feed-forward слоёв блоками уменьшает потребление памяти ff-слоями.

3. Приближённое вычисление внимания через механизм Locality-sensitive hashing (LSH) сокращает сложность в этом месте с квадратичной O(L^2) до O(L*logL) (L -- размер последовательности).

Из всего этого самое интересное, кажется, LSH. Идея которого в том, что, во-первых, в расчёте внимания есть softmax, а в нём доминируют обычно несколько больших (наиболее близких к исходному) элементов. Так что достаточно считать его на этих самых наиболее близких. И, во-вторых, чтобы попроще найти эти наиболее близкие, надо использовать LSH, который сразу и положит их в один бакет. Так что включаем LSH и работаем только внутри бакета. На потенциальные промахи забиваем.

В чём-то идейно похоже на Sparse Transformer от OpenAI, только через LSH.

В экспериментах показывается, что всё это добро не ухудшает качество трансформера.

Query и Keys в трансформере можно считать одной матрицей, а не раздельными. Это ок, хуже не становится (иногда даже чуть лучше).

Обратимые слои тоже ок, тоже хуже не становится.

LSH делает чуть хуже, если хешей мало (скажем 2), но если сделать их побольше (8 или 16), то в целом тоже ок.

Ну и профит.

Если взглянуть шире, то за последнее время накопилось несколько интересных улучшений, которые выглядят ортогональными друг другу. Я бы занёс сюда:
* ALBERT (или как альтернатива ему Universal Transformer) от Гугла
* Compressive Transformer (как более продвинутый вариант Transformer-XL) от DeepMind
* Adaptive attention span от Фейсбука
* Ещё были оптимизации от Фейсбука про All-attention layer (https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/)
* Reformer вот теперь
* Наверное, если подумать, ещё что-то можно сюда добавить.

Коммьюнити ждёт своих героев, которые [имеют под рукой кластер или суперпомпьютер и] соберут все эти улучшения вместе и создатут новый супер-трансформер, а потом сделают на нём новый супер-BERT и супер-GPT2.

А если ещё это всё отдистиллировать…

Ам!



group-telegram.com/gonzo_ML/176
Create:
Last Update:

Reformer: The Efficient Transformer
Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya
Статья: https://arxiv.org/abs/2001.04451
Код: https://github.com/google/trax/tree/master/trax/models/reformer

Больше трансформеров, хороших и разных! Łukasz Kaiser, кстати, соавтор оригинальной работы, а также работы про Universal Transformer, да и многого другого по теме (https://scholar.google.ru/citations?hl=en&user=JWmiQR0AAAAJ&sortby=pubdate).

Реформер -- это по сути техническая оптимизация оригинального трансформера, чтобы он занимал меньше памяти и быстрее считался.

Проблема обычного трансформера, что он большой и тяжёлый, плюс сложность механизма внимания квадратичная. Из-за всего этого обучать трансформеры (особенно на длинных последовательностях) становится невозможно без кластера. И даже файнтюнить не всегда можно на одном GPU.

Например, в одной из больших конфигураций трансформера (не из оригинальной работы, а из более навороченной https://arxiv.org/abs/1811.02084, которая конечно не про типичный трансформер, а скорее про историю типа Мегатрона от Нвидии), число параметров в слое может достигать полумиллиарда. И слоёв таких много.

Плюс для обучения надо сохранять активации, плюс feed-forward слои в трансформере ещё большую размерность эмбеддингов имеют.

Соответственно в работе предлагаются три техники для облегчения этих проблем.

1. Reversible layers по типу как здесь https://arxiv.org/abs/1707.04585. Позволяют сократить на хранении активаций в N раз (N -- число слоёв).

2. Работа с активациями feed-forward слоёв блоками уменьшает потребление памяти ff-слоями.

3. Приближённое вычисление внимания через механизм Locality-sensitive hashing (LSH) сокращает сложность в этом месте с квадратичной O(L^2) до O(L*logL) (L -- размер последовательности).

Из всего этого самое интересное, кажется, LSH. Идея которого в том, что, во-первых, в расчёте внимания есть softmax, а в нём доминируют обычно несколько больших (наиболее близких к исходному) элементов. Так что достаточно считать его на этих самых наиболее близких. И, во-вторых, чтобы попроще найти эти наиболее близкие, надо использовать LSH, который сразу и положит их в один бакет. Так что включаем LSH и работаем только внутри бакета. На потенциальные промахи забиваем.

В чём-то идейно похоже на Sparse Transformer от OpenAI, только через LSH.

В экспериментах показывается, что всё это добро не ухудшает качество трансформера.

Query и Keys в трансформере можно считать одной матрицей, а не раздельными. Это ок, хуже не становится (иногда даже чуть лучше).

Обратимые слои тоже ок, тоже хуже не становится.

LSH делает чуть хуже, если хешей мало (скажем 2), но если сделать их побольше (8 или 16), то в целом тоже ок.

Ну и профит.

Если взглянуть шире, то за последнее время накопилось несколько интересных улучшений, которые выглядят ортогональными друг другу. Я бы занёс сюда:
* ALBERT (или как альтернатива ему Universal Transformer) от Гугла
* Compressive Transformer (как более продвинутый вариант Transformer-XL) от DeepMind
* Adaptive attention span от Фейсбука
* Ещё были оптимизации от Фейсбука про All-attention layer (https://ai.facebook.com/blog/making-transformer-networks-simpler-and-more-efficient/)
* Reformer вот теперь
* Наверное, если подумать, ещё что-то можно сюда добавить.

Коммьюнити ждёт своих героев, которые [имеют под рукой кластер или суперпомпьютер и] соберут все эти улучшения вместе и создатут новый супер-трансформер, а потом сделают на нём новый супер-BERT и супер-GPT2.

А если ещё это всё отдистиллировать…

Ам!

BY gonzo-обзоры ML статей




Share with your friend now:
group-telegram.com/gonzo_ML/176

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Given the pro-privacy stance of the platform, it’s taken as a given that it’ll be used for a number of reasons, not all of them good. And Telegram has been attached to a fair few scandals related to terrorism, sexual exploitation and crime. Back in 2015, Vox described Telegram as “ISIS’ app of choice,” saying that the platform’s real use is the ability to use channels to distribute material to large groups at once. Telegram has acted to remove public channels affiliated with terrorism, but Pavel Durov reiterated that he had no business snooping on private conversations. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. Also in the latest update is the ability for users to create a unique @username from the Settings page, providing others with an easy way to contact them via Search or their t.me/username link without sharing their phone number. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." Russian President Vladimir Putin launched Russia's invasion of Ukraine in the early-morning hours of February 24, targeting several key cities with military strikes.
from ye


Telegram gonzo-обзоры ML статей
FROM American