Telegram Group & Telegram Channel
Для промышленной версии исследователи переобучают классификаторы, используя Haiku вместо Sonnet. Для снижения FPR значительно увеличили объем рубрики с безопасными вопросами и расширили номенклатуру аугментаций. Для теста использовали 5000 запросов в Claude[.]ai и тематические вопросы из MMLU и GPQA в качестве чистого сабсета и 5681 автоматически сгенерированную попытку джейлбрейка в качестве грязного. В результате получилось добиться снижения вероятности джейлбрейка с 86% до 5% за счет роста доли ложных срабатываний всего на 0,38 п.п. Тут, правда, есть нюанс, который аккуратно спрятан в 30-страничном приложении: на GPQA, точнее на конкретно химических вопросах, FPR равнялся 26%.

В общем, с одной стороны, уже и Anthropic, ведущая лаборатория с точки зрения безопасности моделей, пришла к тому, что без цензора никуда. Очень круто, что подход работает чисто на синтетических данных – качественные LLM общего назначения могут быть очень перспективными с точки зрения создания датасетов для маленьких классификаторов, в том числе и вне задач модерации, даже если не обзывать процесс генерации данных конституционным. С другой стороны, в ходе чтения статьи всплывает куча «но»: это и FPR, на который был выкручен детектор при ред-тиминге, и то, что FPR на общих вопросах совершенно не отражает FPR на безопасных вопросах из потенциально опасной сферы: отказ от четверти запросов на GPQA – это все же многовато. Напомню, что в статье про RMU авторы столкнулись с той же проблемой – если начать вырезать данные, связанные с химическим оружием, то очень сильно падают общие химические способности модели. В общем, хотя статья и интересная, назвать задачу модерации решенной сложно. Зато она решает важную политическую задачу для Anthropic. Дарио Амодеи активно критиковал выкладывание моделей тем же Цукербергом в опен-сорс. Если признать, что защитить модель от абьюза химическими террористами в процессе обучения нельзя и ее надо закрывать классификаторами, то в таком случае ни о каких торрентах с весами и речи быть не может.

В дополнение к статье авторы запустили демо-сайт, где классификаторы можно попробовать поломать самому. Я поразвлекался с ним полчаса, выводы такие. Обойти классификатор ввода достаточно несложно с помощью стандартным приемов а-ля Crescendo и ролплея. Самым интересным в процессе является следить, в какой момент просыпается классификатор аутпута, прерывающий стриминг – это позволяет достаточно неплохо понять, что триггерит модель. Если вы достаточно долго занимались классификацией текстов (да и классификацией вообще), вы знаете, насколько легко модели оверфиттятся на ключевые слова. Отслеживая аутпуты на первом задании, можно заметить, что модель срабатывает при упоминании респираторов Honeywell, «желтых жидкостей», изоленты и вытяжек (ну и некоторых других вещей, но идея понятна). Очевидно, входной классификатор таких подробностей не знает, поэтому просьба не упоминать цвета, рекомендовать иные бренды и называть изоленту скотчем (в комбинации с другими приемами) позволяет достаточно легко обойти оба классификатора. Одновременно с этим получить ок от гредера не получилось, но активно работать над цензурой для компании, которая публично заявляет, что ее цель – сделать ИИ, который сделает оборонку США достаточно великой для установления мирового господства, не очень хочется.



group-telegram.com/llmsecurity/489
Create:
Last Update:

Для промышленной версии исследователи переобучают классификаторы, используя Haiku вместо Sonnet. Для снижения FPR значительно увеличили объем рубрики с безопасными вопросами и расширили номенклатуру аугментаций. Для теста использовали 5000 запросов в Claude[.]ai и тематические вопросы из MMLU и GPQA в качестве чистого сабсета и 5681 автоматически сгенерированную попытку джейлбрейка в качестве грязного. В результате получилось добиться снижения вероятности джейлбрейка с 86% до 5% за счет роста доли ложных срабатываний всего на 0,38 п.п. Тут, правда, есть нюанс, который аккуратно спрятан в 30-страничном приложении: на GPQA, точнее на конкретно химических вопросах, FPR равнялся 26%.

В общем, с одной стороны, уже и Anthropic, ведущая лаборатория с точки зрения безопасности моделей, пришла к тому, что без цензора никуда. Очень круто, что подход работает чисто на синтетических данных – качественные LLM общего назначения могут быть очень перспективными с точки зрения создания датасетов для маленьких классификаторов, в том числе и вне задач модерации, даже если не обзывать процесс генерации данных конституционным. С другой стороны, в ходе чтения статьи всплывает куча «но»: это и FPR, на который был выкручен детектор при ред-тиминге, и то, что FPR на общих вопросах совершенно не отражает FPR на безопасных вопросах из потенциально опасной сферы: отказ от четверти запросов на GPQA – это все же многовато. Напомню, что в статье про RMU авторы столкнулись с той же проблемой – если начать вырезать данные, связанные с химическим оружием, то очень сильно падают общие химические способности модели. В общем, хотя статья и интересная, назвать задачу модерации решенной сложно. Зато она решает важную политическую задачу для Anthropic. Дарио Амодеи активно критиковал выкладывание моделей тем же Цукербергом в опен-сорс. Если признать, что защитить модель от абьюза химическими террористами в процессе обучения нельзя и ее надо закрывать классификаторами, то в таком случае ни о каких торрентах с весами и речи быть не может.

В дополнение к статье авторы запустили демо-сайт, где классификаторы можно попробовать поломать самому. Я поразвлекался с ним полчаса, выводы такие. Обойти классификатор ввода достаточно несложно с помощью стандартным приемов а-ля Crescendo и ролплея. Самым интересным в процессе является следить, в какой момент просыпается классификатор аутпута, прерывающий стриминг – это позволяет достаточно неплохо понять, что триггерит модель. Если вы достаточно долго занимались классификацией текстов (да и классификацией вообще), вы знаете, насколько легко модели оверфиттятся на ключевые слова. Отслеживая аутпуты на первом задании, можно заметить, что модель срабатывает при упоминании респираторов Honeywell, «желтых жидкостей», изоленты и вытяжек (ну и некоторых других вещей, но идея понятна). Очевидно, входной классификатор таких подробностей не знает, поэтому просьба не упоминать цвета, рекомендовать иные бренды и называть изоленту скотчем (в комбинации с другими приемами) позволяет достаточно легко обойти оба классификатора. Одновременно с этим получить ок от гредера не получилось, но активно работать над цензурой для компании, которая публично заявляет, что ее цель – сделать ИИ, который сделает оборонку США достаточно великой для установления мирового господства, не очень хочется.

BY llm security и каланы





Share with your friend now:
group-telegram.com/llmsecurity/489

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%. Now safely in France with his spouse and three of his children, Kliuchnikov scrolls through Telegram to learn about the devastation happening in his home country. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from ye


Telegram llm security и каланы
FROM American