Telegram Group & Telegram Channel
Необычные значения в данных
Цикл постов о подготовке данных. Пост 2

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут.

Как анализировать выбросы: и тут causality

При анализе выбросов нужно проверять, нет ли взаимосвязи между выбросами в одной из компонент и другими признаками. По аналогии с пропущенными значениями, где обычно выделяют случаи MCAR, MAR, и MNAR, выбросы можно разделить на:

- Outlier Completely At Random - аномальное значение одного из признаков никак не связано с значениями других признаков. Скорее всего, эту точку данных нужно выкинуть. Пример - при медицинском осмотре сотрудников иногда барахлил автоматический тонометр, ошибка полностью случайна.

- Outlier At Random - аномальное значение одного из признаков можно объяснить другими признаками. Например, мальчиков и девочек на медосмотре смотрели разные врачи - и врач, смотревший мальчиков, был менее внимателен и чаще ошибался. Такие выбросы можно считать пропущенными значениями и, возможно, импутировать, S. Jager(2021).

- Outlier Not At Random - аномальное значение, зависящее от значения признака. Например, люди с большими доходами иногда занижают их в опросах, а с маленькими - завышают. Тогда выявленная аномалия - сама по себе важный признак. А еще это может быть не выброс, а редкий случай,.

Подходы и инструменты для выявления выбросов

Для выявления выбросов используют много подходов.

Наиболее общий из них - ошибка реконструкции автоэнкодером. Автоэнкодер выучивает прямую и обратную проекции в пространство меньшей размерности. Если исследуемый пример после кодирования и обратного декодирования значительно изменился, можно предположить, что распределение, на котором обучался автоэнкодер, отличается от распределения, из которого был получен рассматриваемый пример. Подробнее, например, тут.

Другой популярный подход базируется на том, что необычные значения легко отделить от остальных. Пример такого подхода - IsolationForest.

Хороший обзор подходов к детекции выбросов есть в лекциях MIT от 2023 г. и статьях А. Дьяконова, кое-что есть в 4й лекции нашего курса по ML System Design, современные подходы собраны в обзоре PapersWithCode по Anomaly Detection.

Есть хорошие библиотеки Luminaire и PyOD. PyOD - удобный конструктор детекторов аномалий. В Luminaire много интересных подходов на основе структурных моделей, в том числе прекрасный подход для работы с временными рядами.

В следующем посте цикла мы подытожим теоретическую часть небольшим фреймворком - руководством по работе с выбросами на основе примеров из практики.

Ваш @Reliable ML



group-telegram.com/reliable_ml/138
Create:
Last Update:

Необычные значения в данных
Цикл постов о подготовке данных. Пост 2

Продолжаем серию постов, посвященную подготовке данных. Первый пост тут.

Как анализировать выбросы: и тут causality

При анализе выбросов нужно проверять, нет ли взаимосвязи между выбросами в одной из компонент и другими признаками. По аналогии с пропущенными значениями, где обычно выделяют случаи MCAR, MAR, и MNAR, выбросы можно разделить на:

- Outlier Completely At Random - аномальное значение одного из признаков никак не связано с значениями других признаков. Скорее всего, эту точку данных нужно выкинуть. Пример - при медицинском осмотре сотрудников иногда барахлил автоматический тонометр, ошибка полностью случайна.

- Outlier At Random - аномальное значение одного из признаков можно объяснить другими признаками. Например, мальчиков и девочек на медосмотре смотрели разные врачи - и врач, смотревший мальчиков, был менее внимателен и чаще ошибался. Такие выбросы можно считать пропущенными значениями и, возможно, импутировать, S. Jager(2021).

- Outlier Not At Random - аномальное значение, зависящее от значения признака. Например, люди с большими доходами иногда занижают их в опросах, а с маленькими - завышают. Тогда выявленная аномалия - сама по себе важный признак. А еще это может быть не выброс, а редкий случай,.

Подходы и инструменты для выявления выбросов

Для выявления выбросов используют много подходов.

Наиболее общий из них - ошибка реконструкции автоэнкодером. Автоэнкодер выучивает прямую и обратную проекции в пространство меньшей размерности. Если исследуемый пример после кодирования и обратного декодирования значительно изменился, можно предположить, что распределение, на котором обучался автоэнкодер, отличается от распределения, из которого был получен рассматриваемый пример. Подробнее, например, тут.

Другой популярный подход базируется на том, что необычные значения легко отделить от остальных. Пример такого подхода - IsolationForest.

Хороший обзор подходов к детекции выбросов есть в лекциях MIT от 2023 г. и статьях А. Дьяконова, кое-что есть в 4й лекции нашего курса по ML System Design, современные подходы собраны в обзоре PapersWithCode по Anomaly Detection.

Есть хорошие библиотеки Luminaire и PyOD. PyOD - удобный конструктор детекторов аномалий. В Luminaire много интересных подходов на основе структурных моделей, в том числе прекрасный подход для работы с временными рядами.

В следующем посте цикла мы подытожим теоретическую часть небольшим фреймворком - руководством по работе с выбросами на основе примеров из практики.

Ваш @Reliable ML

BY Reliable ML


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/reliable_ml/138

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised.
from ye


Telegram Reliable ML
FROM American