Telegram Group & Telegram Channel
Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.



group-telegram.com/sysblok/627
Create:
Last Update:

Как дообучить языковую модель писать в стиле Достоевского

Как обучить нейросеть на своих данных? Какие бывают параметры обучения/генерации, и на что они влияют? Как оптимизировать процесс обучения, если нет видеокарты? Отвечаем на все эти вопросы в нашем туториале по файн-тюнингу ruGPT3 на текстах Достоевского.

Кратко: о чем
статья?

Fine-Tuning — это способ улучшить предварительно обученную модель, которая уже имеет некоторые знания, путем небольших корректировок. Благодаря нему языковую модель можно обучить генерировать тексты в самых разных стилях: от комментариев из Одноклассников до прозы Лермонтова. Для fine-tuning достаточно нескольких мегабайтов текстов, что примерно эквивалентно 10-15 произведениям.

При этом дообучение любых нейросетей требует вычислительные мощности, то есть GPU (видеокарты). Работать с видеокартой бесплатно можно с помощью сервиса Google Colab, в который как раз можно вместить самую маленькую версию русскоязычной модели ruGPT3. А в качестве данных можно взять готовый корпус, состоящий из 34 произведений Достоевского.

Если четко следовать инструкции, модель, подстраиваясь под стиль Достоевского, сгенерирует, например такую фразу: «Кофею, а? Нет-с. Не надо; да и не нужно…». На этом примере видно, что она уловила такие архаичные формы, как «кофею», словоерс «нет-с» и некоторые другие особенности поэтики писателя.

Полный подробный текст инструкции для дообучения модели на корпусе Достоевского, построчно прокомментированный скрипт для обучения языковых моделей и примеры других результатов найдёте в полном тексте статьи. Если будете обучать модель на текстах других писателей (или — тоже Достоевского) — обязательно делитесь в комментариях результатами.

Время чтения: 19 минут.

BY Системный Блокъ




Share with your friend now:
group-telegram.com/sysblok/627

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For tech stocks, “the main thing is yields,” Essaye said. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities.
from ye


Telegram Системный Блокъ
FROM American