group-telegram.com/tropicalgeometry/844
Last Update:
Рассмотрим бросания честной монетки, и пусть S_n — количество орлов среди n бросаний.
Во всех курсах теорвера доказывают, что S_n/n сходится к 1/2 с вероятностью 1, при n стремящемся к бесконечности.
И мне всегда было трудно понять доказательство. Формально оно выглядит так: вместо монеток у нас появляется дискретные распределения S_n на прямой. А дальше, посредством магии неравенства Чебышева (это ладно) и факта о том, что дисперсия суммы независимых случайных величин это сумма дисперсий (это, по-моему, легко доказать, но понять хоть в каком-то геометрическом смысле невозможно — научите меня!), всё и доказывается.
Между тем, душа жаждала другого: рассмотрим пространство всех бесконечных последовательностей орлов и решек, там можно завести сигма-алгебру и функцию вероятности. Дальше для некоторых бесконечных последовательностей предел S_n/n существует. Скажите, где написано, что почти для всех последовательностей он существует и равен 1/2? Это ведь совсем не равносильно существованию предела в предыдущем абзаце.
BY tropical saint petersburg
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/tropicalgeometry/844