Telegram Group & Telegram Channel
The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/2498
Create:
Last Update:

The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits

СОТА Модели быстро растут в размере (гляньте только на триллионы параметров в GPT-4 и будующей GPT-5), а гонять их хочется быстро и занедорого. Похтому приходится ухищряться со всякими квантизациями.

С BitNet 1.58, новым методом тренировки от Microsoft, моделька натренированная по рецепту от StableLM 3B (тот же датасет, столько же параметров, тренировали на тех же двух триллионах токенов) использует в 20 раз меньше энергии, в 3.5 раза меньше памяти при инференсе и в 2.7 раза быстрее по сравнению с fp16 моделью, при этом имея такое же качество 😱.

Как?
Авторы предлагают заменить обычный Linear слой на слой BitLinear, где тренируются скрытые веса, которые во время forward pass квантизируются: через absmean, веса делятся на среднее абсолютное значение и округляются к ближайшему значению из {-1, 0, 1}. Активации квантизируются 8-битным absmax-ом. Для бэкпропа через квантизацию используется straigth-through estimator. Квантизация повышает стабильность тренировки и позволяет поставить learning rate в несколько раз выше чем для fp16 модели. Остальные части модели не меняются, эмбеддинги не квантизируются. Судя по пейперу для инференса используется исключительно int8.

На моделях меньше 3B - BitNet 1.58 отстаёт по качеству, хотя всё ещё значительно быстрее. Зато на моделях большего размера преимущества по скорости только растут: гипотетическая BitNet 1.58 70B должна кушать в 41 раз меньше энергии, в 7.16 раз меньше памяти и быть в 4.1 раза быстрее.

Обещают выложить код и веса - ждемс! Хочу, чтобы наконец модель на триллион параметров бегала у меня под столом.

Статья
Код будет тут

@ai_newz

BY эйай ньюз




Share with your friend now:
group-telegram.com/ai_newz/2498

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

He adds: "Telegram has become my primary news source." At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Since its launch in 2013, Telegram has grown from a simple messaging app to a broadcast network. Its user base isn’t as vast as WhatsApp’s, and its broadcast platform is a fraction the size of Twitter, but it’s nonetheless showing its use. While Telegram has been embroiled in controversy for much of its life, it has become a vital source of communication during the invasion of Ukraine. But, if all of this is new to you, let us explain, dear friends, what on Earth a Telegram is meant to be, and why you should, or should not, need to care. Recently, Durav wrote on his Telegram channel that users' right to privacy, in light of the war in Ukraine, is "sacred, now more than ever." Elsewhere, version 8.6 of Telegram integrates the in-app camera option into the gallery, while a new navigation bar gives quick access to photos, files, location sharing, and more.
from us


Telegram эйай ньюз
FROM American