Telegram Group & Telegram Channel
Scaling Diffusion Transformers to 16 B parameters with MoE

Китайцы месяц назад заскейлили DiT до 16.5 млрд параметров с помощью Mixture of Experts (MoE). Это могла бы быть самая большая DiT диффузия в опенсорсе на сегодняшней день, если бы веса 16.5B выложоли. Но шансы этого близки к нулю, т.к. я прождал месяц, а весов большой модели все еще нет.

Экспертов вставили в каждый MLP блок, то есть вместо одного такого блока у нас теперь K параллельно, которые активируются в зависимости от входного токена. Во время инференса активны только 4 эксперта из К в каждый момент ( 2 "общих" эксперта активны всегда).

В чем профит использовать MoE?
- По сравнению с Dense моделью аналогичного размера (где у нас один жирный MLP блок), МоE позволяет условно распределить знания по отдельным экспертам, каждый из которых имеет меньший размер. За счет этого во время инференса мы можем активировать только часть экспертов и экономить на вычислениях.
- Выигрыша по памяти MoE в этом случае не дает - нам все равно нужно загружать сразу всех экспертов в память, т.к выбор экспертов происходит на уровне токенов.
- Если бы мы выбирали экспертов на уровне промпта или шага t, то можно было бы сэкономить и память. Но тут так не делают.

Тренят модель на:
– На 1.3M картинках из Imagenet и на синтетике.
– Нагенерили 5M картинок 512x512 для Imagenet классов с помощью SD3-2B и SDXL, а затем фильтранули клипом. Это для того, чтобы насытить данными жирную 16.5B модель, ведь 1.3M из Imagenet тут уже мало.

Результаты:
Картинки в статье выглядят так себе, наверное плохо черипикали. Но чего ожидать от генерации по классам на Imagenet. А по метрикам у них SOTA. Что ж, ждем аналогичную text-2-image модель.

В репе есть код тренировки (на DeepSpeed). Недавно добавили тренировку на основе Flow Matching, как это делают в Flux и SD3 - авторы пишут что таким методом модель быстрее сходится и дает лучшие результаты (это полезное замечание).

Вот веса моделей:
- B/2 с 8-ю экспертам (800 M, 12 блоков)
- G/2 с 16-ю экспертами (16.5 B, 40 блоков) - не выложили ха-ха.

@ai_newz



group-telegram.com/ai_newz/3140
Create:
Last Update:

Scaling Diffusion Transformers to 16 B parameters with MoE

Китайцы месяц назад заскейлили DiT до 16.5 млрд параметров с помощью Mixture of Experts (MoE). Это могла бы быть самая большая DiT диффузия в опенсорсе на сегодняшней день, если бы веса 16.5B выложоли. Но шансы этого близки к нулю, т.к. я прождал месяц, а весов большой модели все еще нет.

Экспертов вставили в каждый MLP блок, то есть вместо одного такого блока у нас теперь K параллельно, которые активируются в зависимости от входного токена. Во время инференса активны только 4 эксперта из К в каждый момент ( 2 "общих" эксперта активны всегда).

В чем профит использовать MoE?
- По сравнению с Dense моделью аналогичного размера (где у нас один жирный MLP блок), МоE позволяет условно распределить знания по отдельным экспертам, каждый из которых имеет меньший размер. За счет этого во время инференса мы можем активировать только часть экспертов и экономить на вычислениях.
- Выигрыша по памяти MoE в этом случае не дает - нам все равно нужно загружать сразу всех экспертов в память, т.к выбор экспертов происходит на уровне токенов.
- Если бы мы выбирали экспертов на уровне промпта или шага t, то можно было бы сэкономить и память. Но тут так не делают.

Тренят модель на:
– На 1.3M картинках из Imagenet и на синтетике.
– Нагенерили 5M картинок 512x512 для Imagenet классов с помощью SD3-2B и SDXL, а затем фильтранули клипом. Это для того, чтобы насытить данными жирную 16.5B модель, ведь 1.3M из Imagenet тут уже мало.

Результаты:
Картинки в статье выглядят так себе, наверное плохо черипикали. Но чего ожидать от генерации по классам на Imagenet. А по метрикам у них SOTA. Что ж, ждем аналогичную text-2-image модель.

В репе есть код тренировки (на DeepSpeed). Недавно добавили тренировку на основе Flow Matching, как это делают в Flux и SD3 - авторы пишут что таким методом модель быстрее сходится и дает лучшие результаты (это полезное замечание).

Вот веса моделей:
- B/2 с 8-ю экспертам (800 M, 12 блоков)
- G/2 с 16-ю экспертами (16.5 B, 40 блоков) - не выложили ха-ха.

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/3140

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." To that end, when files are actively downloading, a new icon now appears in the Search bar that users can tap to view and manage downloads, pause and resume all downloads or just individual items, and select one to increase its priority or view it in a chat. In addition, Telegram's architecture limits the ability to slow the spread of false information: the lack of a central public feed, and the fact that comments are easily disabled in channels, reduce the space for public pushback.
from us


Telegram эйай ньюз
FROM American