Telegram Group & Telegram Channel
🔥Molmo: Outperforming Proprietary Multimodal Language Models

Приношу вам самый сок. Кажется, это самый лучший доклад за сегодня.

За два часа до релиза Llama 3.2 челы выложили семейство открытых моделей Molmo (и нет, это не совпадение):
- 1B
- 7B
- 72B

По качеству на визуальных задачах Molmo выдаёт +- перформанс как Llama 3.2: где-то лучше, где-то хуже, и приближается к GPT-4o.

- Но, пре-трейн модель они делали всего на 700k размеченных парах картинка-текст (PixMo-Cap). В то время как Llama тренили на 6 млрд!
- Использовали в 9000 раз меньше данных, но гораздо более высокого качества.
- Люди не любят печатать, люди любят говорить. Поэтому разметчиков просили не печатать описание картинки, а описывать её ГОЛОСОМ 60-90 секунд. Далее запись автоматически переводили в текст. Это гораздо эффективнее, проще и помогает быстро собрать очень длинные и детальные описания картинок.
- Дополнительно разметчиков просили тыкать точками на объекты, про которые они говорят. Это помогло научить модель связывать пиксели с текстом, выдавая точки на картинке, когда она описывает какой-то объект.

Все это очень сильно подняло качество модели. Это прям крутые идеи.

По архитектуре ничего необычного – transformer с late fusion. То есть токены картинок пропускаются через обучаемый коннектор, а затем кормятся в LLM.

Трейн в два стейджа, ничего не замораживая:
(1) multimodal pre-training для генерации описаний на новом датасете – 700k картинок; (2) supervised fine-tuning на instruction-датасете, который они тоже собрали сами (там и точки на картинках, и документы, прочие задачи) – тут около 1.9 млн картинок (возможно, пересекается с претрейн-датасетом).

Трейн и эвал код и датасет (PixMo) выложат в течение 2 месяцев – я им верю!

Блогпост про модели
Arxiv

@ai_newz
Please open Telegram to view this post
VIEW IN TELEGRAM
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/ai_newz/3275
Create:
Last Update:

🔥Molmo: Outperforming Proprietary Multimodal Language Models

Приношу вам самый сок. Кажется, это самый лучший доклад за сегодня.

За два часа до релиза Llama 3.2 челы выложили семейство открытых моделей Molmo (и нет, это не совпадение):
- 1B
- 7B
- 72B

По качеству на визуальных задачах Molmo выдаёт +- перформанс как Llama 3.2: где-то лучше, где-то хуже, и приближается к GPT-4o.

- Но, пре-трейн модель они делали всего на 700k размеченных парах картинка-текст (PixMo-Cap). В то время как Llama тренили на 6 млрд!
- Использовали в 9000 раз меньше данных, но гораздо более высокого качества.
- Люди не любят печатать, люди любят говорить. Поэтому разметчиков просили не печатать описание картинки, а описывать её ГОЛОСОМ 60-90 секунд. Далее запись автоматически переводили в текст. Это гораздо эффективнее, проще и помогает быстро собрать очень длинные и детальные описания картинок.
- Дополнительно разметчиков просили тыкать точками на объекты, про которые они говорят. Это помогло научить модель связывать пиксели с текстом, выдавая точки на картинке, когда она описывает какой-то объект.

Все это очень сильно подняло качество модели. Это прям крутые идеи.

По архитектуре ничего необычного – transformer с late fusion. То есть токены картинок пропускаются через обучаемый коннектор, а затем кормятся в LLM.

Трейн в два стейджа, ничего не замораживая:
(1) multimodal pre-training для генерации описаний на новом датасете – 700k картинок; (2) supervised fine-tuning на instruction-датасете, который они тоже собрали сами (там и точки на картинках, и документы, прочие задачи) – тут около 1.9 млн картинок (возможно, пересекается с претрейн-датасетом).

Трейн и эвал код и датасет (PixMo) выложат в течение 2 месяцев – я им верю!

Блогпост про модели
Arxiv

@ai_newz

BY эйай ньюз













Share with your friend now:
group-telegram.com/ai_newz/3275

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

For example, WhatsApp restricted the number of times a user could forward something, and developed automated systems that detect and flag objectionable content. The Security Service of Ukraine said in a tweet that it was able to effectively target Russian convoys near Kyiv because of messages sent to an official Telegram bot account called "STOP Russian War." What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. "The result is on this photo: fiery 'greetings' to the invaders," the Security Service of Ukraine wrote alongside a photo showing several military vehicles among plumes of black smoke. Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report.
from us


Telegram эйай ньюз
FROM American