Telegram Group & Telegram Channel
Вечные проблемы DS-команд

Есть вещи, которые кажутся очевидными любому DS-у хотя бы с уровня мидла. Вы и ваша команда постоянно работаете над ними, стремитесь улучшать, но опыт показывает: гэпы и точки роста всё равно остаются. Это сложнее, чем кажется на первый взгляд. Я вижу это как на примере своей команды, так и в других. О чём я?

Метрики

Мы регулярно пересматриваем метрики. Они бывают разными:

- Бизнес-метрики
- Общие технические метрики
- Метрики ML-моделей

На первый взгляд, с бизнес-метриками всё должно быть просто. Но, как всегда, дьявол кроется в деталях.

Пример: метрика выручки.

- Вы уверены, что измеряете её правильно?
- Прокрашивается ли она в краткосрочных тестах?
- Если прокрашивается, сохранится ли эффект в долгосрочной перспективе?

Допустим, вы улучшили качество прогноза в пользовательском интерфейсе. Обучили новую модель, метрики качества улучшились. А что с выручкой? Вырастет ли она? Ответ даст только долгосрочный тест на несколько месяцев.

Вторая проблема — корреляция оффлайн ML-метрик и онлайн бизнес-метрик.

Например, ROC-AUC улучшился на несколько пунктов. Приведёт ли это к росту выручки? И на сколько процентов?

Бывали ли у вас случаи, когда оффлайн-метрики улучшились, а онлайн — нет? Или наоборот: на оффлайне изменения минимальны, а в онлайне бизнес-метрики резко выросли?

Ещё одна боль — это сбор базы проведённых тестов и датасетов к ним. Система меняется, старые данные теряют актуальность, и база перестаёт быть надёжной опорой.

Качество пайплайнов и оффлайн-среды

Работая над ML-продуктами, вы неизбежно сталкиваетесь с пайплайнами и симуляторами. И здесь тоже полно сложностей.

Система меняется, симуляторы "протухают". Качество датасетов в пайплайне требует регулярной валидации: что-то устарело, что-то изменилось, где-то появилась новая информация.

Постоянные доработки увеличивают время экспериментов. Когда подсчёты занимают полдня, а на дисках заканчивается место из-за артефактов, пора всё переписывать.

Выводы

Качественные метрики и надёжная оффлайн-среда — ключ к быстрому достижению аплифтов. Это позволяет ds-ам быстрее запускать эксперименты и тесты.

Но работа над этими аспектами — постоянная борьба. Здесь важно философское отношение и регулярное выделение ресурсов команды на системные задачи. Радуйтесь каждому стабилизированному компоненту, ведь это результат огромного труда.

Буду рад вашим реакциям 🔥 и историям вашей борьбы 🙃

#tech@big_ledovsky
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/big_ledovsky/283
Create:
Last Update:

Вечные проблемы DS-команд

Есть вещи, которые кажутся очевидными любому DS-у хотя бы с уровня мидла. Вы и ваша команда постоянно работаете над ними, стремитесь улучшать, но опыт показывает: гэпы и точки роста всё равно остаются. Это сложнее, чем кажется на первый взгляд. Я вижу это как на примере своей команды, так и в других. О чём я?

Метрики

Мы регулярно пересматриваем метрики. Они бывают разными:

- Бизнес-метрики
- Общие технические метрики
- Метрики ML-моделей

На первый взгляд, с бизнес-метриками всё должно быть просто. Но, как всегда, дьявол кроется в деталях.

Пример: метрика выручки.

- Вы уверены, что измеряете её правильно?
- Прокрашивается ли она в краткосрочных тестах?
- Если прокрашивается, сохранится ли эффект в долгосрочной перспективе?

Допустим, вы улучшили качество прогноза в пользовательском интерфейсе. Обучили новую модель, метрики качества улучшились. А что с выручкой? Вырастет ли она? Ответ даст только долгосрочный тест на несколько месяцев.

Вторая проблема — корреляция оффлайн ML-метрик и онлайн бизнес-метрик.

Например, ROC-AUC улучшился на несколько пунктов. Приведёт ли это к росту выручки? И на сколько процентов?

Бывали ли у вас случаи, когда оффлайн-метрики улучшились, а онлайн — нет? Или наоборот: на оффлайне изменения минимальны, а в онлайне бизнес-метрики резко выросли?

Ещё одна боль — это сбор базы проведённых тестов и датасетов к ним. Система меняется, старые данные теряют актуальность, и база перестаёт быть надёжной опорой.

Качество пайплайнов и оффлайн-среды

Работая над ML-продуктами, вы неизбежно сталкиваетесь с пайплайнами и симуляторами. И здесь тоже полно сложностей.

Система меняется, симуляторы "протухают". Качество датасетов в пайплайне требует регулярной валидации: что-то устарело, что-то изменилось, где-то появилась новая информация.

Постоянные доработки увеличивают время экспериментов. Когда подсчёты занимают полдня, а на дисках заканчивается место из-за артефактов, пора всё переписывать.

Выводы

Качественные метрики и надёжная оффлайн-среда — ключ к быстрому достижению аплифтов. Это позволяет ds-ам быстрее запускать эксперименты и тесты.

Но работа над этими аспектами — постоянная борьба. Здесь важно философское отношение и регулярное выделение ресурсов команды на системные задачи. Радуйтесь каждому стабилизированному компоненту, ведь это результат огромного труда.

Буду рад вашим реакциям 🔥 и историям вашей борьбы 🙃

#tech@big_ledovsky

BY Big Ledovsky | блог DS лида


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/big_ledovsky/283

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

On December 23rd, 2020, Pavel Durov posted to his channel that the company would need to start generating revenue. In early 2021, he added that any advertising on the platform would not use user data for targeting, and that it would be focused on “large one-to-many channels.” He pledged that ads would be “non-intrusive” and that most users would simply not notice any change. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. Anastasia Vlasova/Getty Images Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from ar


Telegram Big Ledovsky | блог DS лида
FROM American