Telegram Group & Telegram Channel
Вечные проблемы DS-команд

Есть вещи, которые кажутся очевидными любому DS-у хотя бы с уровня мидла. Вы и ваша команда постоянно работаете над ними, стремитесь улучшать, но опыт показывает: гэпы и точки роста всё равно остаются. Это сложнее, чем кажется на первый взгляд. Я вижу это как на примере своей команды, так и в других. О чём я?

Метрики

Мы регулярно пересматриваем метрики. Они бывают разными:

- Бизнес-метрики
- Общие технические метрики
- Метрики ML-моделей

На первый взгляд, с бизнес-метриками всё должно быть просто. Но, как всегда, дьявол кроется в деталях.

Пример: метрика выручки.

- Вы уверены, что измеряете её правильно?
- Прокрашивается ли она в краткосрочных тестах?
- Если прокрашивается, сохранится ли эффект в долгосрочной перспективе?

Допустим, вы улучшили качество прогноза в пользовательском интерфейсе. Обучили новую модель, метрики качества улучшились. А что с выручкой? Вырастет ли она? Ответ даст только долгосрочный тест на несколько месяцев.

Вторая проблема — корреляция оффлайн ML-метрик и онлайн бизнес-метрик.

Например, ROC-AUC улучшился на несколько пунктов. Приведёт ли это к росту выручки? И на сколько процентов?

Бывали ли у вас случаи, когда оффлайн-метрики улучшились, а онлайн — нет? Или наоборот: на оффлайне изменения минимальны, а в онлайне бизнес-метрики резко выросли?

Ещё одна боль — это сбор базы проведённых тестов и датасетов к ним. Система меняется, старые данные теряют актуальность, и база перестаёт быть надёжной опорой.

Качество пайплайнов и оффлайн-среды

Работая над ML-продуктами, вы неизбежно сталкиваетесь с пайплайнами и симуляторами. И здесь тоже полно сложностей.

Система меняется, симуляторы "протухают". Качество датасетов в пайплайне требует регулярной валидации: что-то устарело, что-то изменилось, где-то появилась новая информация.

Постоянные доработки увеличивают время экспериментов. Когда подсчёты занимают полдня, а на дисках заканчивается место из-за артефактов, пора всё переписывать.

Выводы

Качественные метрики и надёжная оффлайн-среда — ключ к быстрому достижению аплифтов. Это позволяет ds-ам быстрее запускать эксперименты и тесты.

Но работа над этими аспектами — постоянная борьба. Здесь важно философское отношение и регулярное выделение ресурсов команды на системные задачи. Радуйтесь каждому стабилизированному компоненту, ведь это результат огромного труда.

Буду рад вашим реакциям 🔥 и историям вашей борьбы 🙃

#tech@big_ledovsky
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/big_ledovsky/283
Create:
Last Update:

Вечные проблемы DS-команд

Есть вещи, которые кажутся очевидными любому DS-у хотя бы с уровня мидла. Вы и ваша команда постоянно работаете над ними, стремитесь улучшать, но опыт показывает: гэпы и точки роста всё равно остаются. Это сложнее, чем кажется на первый взгляд. Я вижу это как на примере своей команды, так и в других. О чём я?

Метрики

Мы регулярно пересматриваем метрики. Они бывают разными:

- Бизнес-метрики
- Общие технические метрики
- Метрики ML-моделей

На первый взгляд, с бизнес-метриками всё должно быть просто. Но, как всегда, дьявол кроется в деталях.

Пример: метрика выручки.

- Вы уверены, что измеряете её правильно?
- Прокрашивается ли она в краткосрочных тестах?
- Если прокрашивается, сохранится ли эффект в долгосрочной перспективе?

Допустим, вы улучшили качество прогноза в пользовательском интерфейсе. Обучили новую модель, метрики качества улучшились. А что с выручкой? Вырастет ли она? Ответ даст только долгосрочный тест на несколько месяцев.

Вторая проблема — корреляция оффлайн ML-метрик и онлайн бизнес-метрик.

Например, ROC-AUC улучшился на несколько пунктов. Приведёт ли это к росту выручки? И на сколько процентов?

Бывали ли у вас случаи, когда оффлайн-метрики улучшились, а онлайн — нет? Или наоборот: на оффлайне изменения минимальны, а в онлайне бизнес-метрики резко выросли?

Ещё одна боль — это сбор базы проведённых тестов и датасетов к ним. Система меняется, старые данные теряют актуальность, и база перестаёт быть надёжной опорой.

Качество пайплайнов и оффлайн-среды

Работая над ML-продуктами, вы неизбежно сталкиваетесь с пайплайнами и симуляторами. И здесь тоже полно сложностей.

Система меняется, симуляторы "протухают". Качество датасетов в пайплайне требует регулярной валидации: что-то устарело, что-то изменилось, где-то появилась новая информация.

Постоянные доработки увеличивают время экспериментов. Когда подсчёты занимают полдня, а на дисках заканчивается место из-за артефактов, пора всё переписывать.

Выводы

Качественные метрики и надёжная оффлайн-среда — ключ к быстрому достижению аплифтов. Это позволяет ds-ам быстрее запускать эксперименты и тесты.

Но работа над этими аспектами — постоянная борьба. Здесь важно философское отношение и регулярное выделение ресурсов команды на системные задачи. Радуйтесь каждому стабилизированному компоненту, ведь это результат огромного труда.

Буду рад вашим реакциям 🔥 и историям вашей борьбы 🙃

#tech@big_ledovsky

BY Big Ledovsky | блог DS лида


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/big_ledovsky/283

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts. Asked about its stance on disinformation, Telegram spokesperson Remi Vaughn told AFP: "As noted by our CEO, the sheer volume of information being shared on channels makes it extremely difficult to verify, so it's important that users double-check what they read." NEWS There was another possible development: Reuters also reported that Ukraine said that Belarus could soon join the invasion of Ukraine. However, the AFP, citing a Pentagon official, said the U.S. hasn’t yet seen evidence that Belarusian troops are in Ukraine. Channels are not fully encrypted, end-to-end. All communications on a Telegram channel can be seen by anyone on the channel and are also visible to Telegram. Telegram may be asked by a government to hand over the communications from a channel. Telegram has a history of standing up to Russian government requests for data, but how comfortable you are relying on that history to predict future behavior is up to you. Because Telegram has this data, it may also be stolen by hackers or leaked by an internal employee.
from us


Telegram Big Ledovsky | блог DS лида
FROM American