В планиметрии есть много методов решить задачу: всякие теоремы, трюки, стандартные картинки, какие-то продвинутые техники. А что можно сказать насчет стереометрии? Там запас этого всего добра урезается в десятки раз. Может, всякие аналоги лемм о воробьях, о велосипедистах и т.д. есть, но они очень малоизвестны и далеко не очень полезны. В стереоме чаще требуются рассуждения про доп. построения, анализ картинки, рассматривание каких-то пересечений плоскостей/проекций, сведений к плоской задаче. Есть конечно аналог радикальных осей, например, но это тоже не очень частый метод.
Тем не менее, все-таки один продвинутый трюк есть.
Забавно, что обычные проективные коники и теоремы на них вполне обобщаются в пространство. В пространстве верны аналоги леммы Соллертинского, теоремы Брианшона и понятие поляры относительно квадрики (причем даже определено не только понятие поляры точки, но и поляры прямой).
Определение. Квадрика – поверхность в пространстве, задающаяся уравнением F(x, y, z) = 0, где deg(F) = 2.
Определение. Полярой точки X относительно квадрики K называется плоскость, проходящая через основания всех касательных из X к K.
То, что основания касательных из X к K лежат в одной плоскости неочевидно, но это правда. Ещё заметим, что поляра X относительно K высекает на K конику.
Однако сейчас нас будет интересовать случай, когда квадрика – сфера, а высекаемая коника – окружность.
Сперва поговорим о стереографической проекции.
Определение. Пусть Г – сфера, O – её центр, а p – некоторая плоскость. Прямая, проходящая через точку O и перпендикулярная p, вторично пересекает Г в точке N (N находится дальше от p, чем вторая точка пересечения). Пусть Х – произвольная точка сферы, а NX пересекает p в точке Y. Стереографической проекцией Г на p будем называть отображение Г -> p при котором X -> Y.
Это отображение – биекция между Г (без точки N) и p. Также заметим, что на самом деле, это просто инверсия с центром N при которой Г переходит в p (инверсия, суженная на Г). Она переводит окружность, не проходящую через N, в окружность, а окружность, проходящую через N, в прямую. Уже сам этот факт является довольно полезным и помогает решать некоторые сложные задачи. Например, это сильно помогает в P5 устной олимпиады по геометрии 2015 года 10-11 класс. (рис. 1)
Но мы пойдем дальше.
Определение. Полярной окружностью точки X относительно сферы Г называется окружность, проходящая через основания касательных из X к Г. Будем обозначать эту окружность p(X).
Получаем биекцию между точками R³ и окружностями на сфере.
Теорема. 1. Прямая AB касается сферы Г <=> p(A), p(B) касаются. 2. Плоскость (ABC) касается Г <=> p(A), p(B), p(C) имеют общую точку. (рис. 2 и 3)
Мысль. Отображение X -> p(X) позволяет сопоставлять стереометрической задаче конфигурацию окружностей на сфере. Совершая затем стереографическую проекцию, мы получаем плоскую задачу, решив которую, мы решим и исходную трехмерную задачу. Также можно совершать эти действия в обратном порядке, проектируя плоскую задачу на сферу и затем возникающие окружности отображая в точки.
И вот это уже мощный интрумент для решения задач.
Пример. Около сферы Г описана четырёхзвенная ломанная ABCD. (рис. 4) (!) Четыре точки касания её сторон со сферой лежат в одной плоскости Доказательство. Мы знаем, что p(A), p(B), p(C), p(D) попарно касаются. Скинем это все стер. проекцией на плоскость. Получим известную простую задачу: четыре окружности на плоскости попарно касаются, тогда точки касания лежат на одной окружности. Проектируя обратно, получаем, что точки касания не просто лежали в одной плоскости - они еще и на одной окружности.
У этой задачи есть другие решения (например, пространственный менелай).
Есть еще более сложные примеры. И вот, собственно, задача Вам.
Скрытая 10.9 Шарыгинки 2024
Точки A, B, C, D лежат в одной плоскости, которая касается сферы Г. Точка A' такова, что тетраэдр BCDA' описан около Г. Аналогично определим B', C', D'. (рис. не требуется) (!) A', B', C', D' лежат в одной плоскости
В планиметрии есть много методов решить задачу: всякие теоремы, трюки, стандартные картинки, какие-то продвинутые техники. А что можно сказать насчет стереометрии? Там запас этого всего добра урезается в десятки раз. Может, всякие аналоги лемм о воробьях, о велосипедистах и т.д. есть, но они очень малоизвестны и далеко не очень полезны. В стереоме чаще требуются рассуждения про доп. построения, анализ картинки, рассматривание каких-то пересечений плоскостей/проекций, сведений к плоской задаче. Есть конечно аналог радикальных осей, например, но это тоже не очень частый метод.
Тем не менее, все-таки один продвинутый трюк есть.
Забавно, что обычные проективные коники и теоремы на них вполне обобщаются в пространство. В пространстве верны аналоги леммы Соллертинского, теоремы Брианшона и понятие поляры относительно квадрики (причем даже определено не только понятие поляры точки, но и поляры прямой).
Определение. Квадрика – поверхность в пространстве, задающаяся уравнением F(x, y, z) = 0, где deg(F) = 2.
Определение. Полярой точки X относительно квадрики K называется плоскость, проходящая через основания всех касательных из X к K.
То, что основания касательных из X к K лежат в одной плоскости неочевидно, но это правда. Ещё заметим, что поляра X относительно K высекает на K конику.
Однако сейчас нас будет интересовать случай, когда квадрика – сфера, а высекаемая коника – окружность.
Сперва поговорим о стереографической проекции.
Определение. Пусть Г – сфера, O – её центр, а p – некоторая плоскость. Прямая, проходящая через точку O и перпендикулярная p, вторично пересекает Г в точке N (N находится дальше от p, чем вторая точка пересечения). Пусть Х – произвольная точка сферы, а NX пересекает p в точке Y. Стереографической проекцией Г на p будем называть отображение Г -> p при котором X -> Y.
Это отображение – биекция между Г (без точки N) и p. Также заметим, что на самом деле, это просто инверсия с центром N при которой Г переходит в p (инверсия, суженная на Г). Она переводит окружность, не проходящую через N, в окружность, а окружность, проходящую через N, в прямую. Уже сам этот факт является довольно полезным и помогает решать некоторые сложные задачи. Например, это сильно помогает в P5 устной олимпиады по геометрии 2015 года 10-11 класс. (рис. 1)
Но мы пойдем дальше.
Определение. Полярной окружностью точки X относительно сферы Г называется окружность, проходящая через основания касательных из X к Г. Будем обозначать эту окружность p(X).
Получаем биекцию между точками R³ и окружностями на сфере.
Теорема. 1. Прямая AB касается сферы Г <=> p(A), p(B) касаются. 2. Плоскость (ABC) касается Г <=> p(A), p(B), p(C) имеют общую точку. (рис. 2 и 3)
Мысль. Отображение X -> p(X) позволяет сопоставлять стереометрической задаче конфигурацию окружностей на сфере. Совершая затем стереографическую проекцию, мы получаем плоскую задачу, решив которую, мы решим и исходную трехмерную задачу. Также можно совершать эти действия в обратном порядке, проектируя плоскую задачу на сферу и затем возникающие окружности отображая в точки.
И вот это уже мощный интрумент для решения задач.
Пример. Около сферы Г описана четырёхзвенная ломанная ABCD. (рис. 4) (!) Четыре точки касания её сторон со сферой лежат в одной плоскости Доказательство. Мы знаем, что p(A), p(B), p(C), p(D) попарно касаются. Скинем это все стер. проекцией на плоскость. Получим известную простую задачу: четыре окружности на плоскости попарно касаются, тогда точки касания лежат на одной окружности. Проектируя обратно, получаем, что точки касания не просто лежали в одной плоскости - они еще и на одной окружности.
У этой задачи есть другие решения (например, пространственный менелай).
Есть еще более сложные примеры. И вот, собственно, задача Вам.
Скрытая 10.9 Шарыгинки 2024
Точки A, B, C, D лежат в одной плоскости, которая касается сферы Г. Точка A' такова, что тетраэдр BCDA' описан около Г. Аналогично определим B', C', D'. (рис. не требуется) (!) A', B', C', D' лежат в одной плоскости
(Ухожу в отпуск на x лет)
BY Ботаем геому
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Although some channels have been removed, the curation process is considered opaque and insufficient by analysts. Ukrainian forces have since put up a strong resistance to the Russian troops amid the war that has left hundreds of Ukrainian civilians, including children, dead, according to the United Nations. Ukrainian and international officials have accused Russia of targeting civilian populations with shelling and bombardments. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government.
from us