Telegram Group & Telegram Channel
📐Байесовская теорема📐

...здорового человека.

О пресвитерианскиом священнике Томасе Байесе я узнал преимущественно во время пандемии ковида. На самом деле, мне и раньше попадались сетевые метаанализы по байесовской методологии, где было указано не просто наличие достоверных различий между группами, но степень веры в то, что один из методов является самым лучшим (этот подход считается более понятным и наглядным по сравнению с вероятностью отвергнуть нулевую гипотезу у фреквенистов). Но уж в ковид-то после появления первых результатов адаптивного, мультиплатформенного, прагматического, объединённого (мы раньше и слов-то таких не знали) исследования ATTAC, ACTIV-4a и REMAP-CAP с байесовской методологией оценки пришлось вникать, как хотя бы интерпретировать полученные результаты.

С тех пор я для себя вынес (исключительно субъективное мнение без претензий на биостатистическую верность изложения), что байесовский подход:

📊оперирует не самими частотами с их воспроизводимостью и достоверностью, а степенью доверия к полученным результатам на основании глобального моделирования;

📊использует не только апостериорные (т.е. уже известные и полученные в результатах данного наблюдения), но и априорные (полученные в других исследованиях или предположительные) данные, что позволяет моделировать различные ситуации.

Классическим примером использования байесовской статистики является расчёт положительной и отрицательной предсказательной способности диагностического теста (тот же ПЦР при ковиде) на основании априорной распространённости заболевания в популяции.

Как это работает с математической точки зрения, я не разбирался (честно говоря, я вообще не имею большого желания глубоко вникать в то, как ездит автомобиль, летает самолёт и считается статистика, но мне нравится всем эти пользоваться), но уяснил точку приложения.

И вот, когда мы с Ильёй Вениаминовичем обсуждали, как пристроить шкалу Wells в его диссертацию (в очередной раз доказывать её отрицательную прогностическую ценность совсем не хотелось), я вспомнил про Байеса и про возможность моделирования положительной прогностической ценности на основании априорных величин распространённости ТГВ.

В тот момент я уже был подписан на канал Никиты Бурлова, который, как раз, постил по поводу байесовской статистики, что и подтолкнуло нас к обращению за помощью именно к нему.

В итоге у нас получилась прекрасная совместная статья (с неоценимым вкладом Максима Кузнецова), доказывающая, что положительная предсказательная способность шкалы Wells зависит от распространённости ТГВ среди обращающихся пациентов, поэтому при её значении >30% вероятность подтвердить ТГВ при наличии высокой клинической вероятности (2 и более балла Wells) становится >80%, что оправдывается начало антикоагулянтной терапии до ультразвуковой верификации тромбоза.

А это, между прочим, является уникальной научной новизной диссертации Ильи Вениаминовича, которую отметил даже Andrew Nicolaides на Европейском венозном форуме.

Статья была опубликована в журнале "Флебология" в декабре прошлого года и находится в открытом доступе, поэтому вы можете ею вдохновиться на использование теоремы Байеса.

А Никите огромная благодарность от всего авторского коллектива!

Мы уже начали думать, что ещё можно взять с пресвитерианского священника🤫



group-telegram.com/lscilib/369
Create:
Last Update:

📐Байесовская теорема📐

...здорового человека.

О пресвитерианскиом священнике Томасе Байесе я узнал преимущественно во время пандемии ковида. На самом деле, мне и раньше попадались сетевые метаанализы по байесовской методологии, где было указано не просто наличие достоверных различий между группами, но степень веры в то, что один из методов является самым лучшим (этот подход считается более понятным и наглядным по сравнению с вероятностью отвергнуть нулевую гипотезу у фреквенистов). Но уж в ковид-то после появления первых результатов адаптивного, мультиплатформенного, прагматического, объединённого (мы раньше и слов-то таких не знали) исследования ATTAC, ACTIV-4a и REMAP-CAP с байесовской методологией оценки пришлось вникать, как хотя бы интерпретировать полученные результаты.

С тех пор я для себя вынес (исключительно субъективное мнение без претензий на биостатистическую верность изложения), что байесовский подход:

📊оперирует не самими частотами с их воспроизводимостью и достоверностью, а степенью доверия к полученным результатам на основании глобального моделирования;

📊использует не только апостериорные (т.е. уже известные и полученные в результатах данного наблюдения), но и априорные (полученные в других исследованиях или предположительные) данные, что позволяет моделировать различные ситуации.

Классическим примером использования байесовской статистики является расчёт положительной и отрицательной предсказательной способности диагностического теста (тот же ПЦР при ковиде) на основании априорной распространённости заболевания в популяции.

Как это работает с математической точки зрения, я не разбирался (честно говоря, я вообще не имею большого желания глубоко вникать в то, как ездит автомобиль, летает самолёт и считается статистика, но мне нравится всем эти пользоваться), но уяснил точку приложения.

И вот, когда мы с Ильёй Вениаминовичем обсуждали, как пристроить шкалу Wells в его диссертацию (в очередной раз доказывать её отрицательную прогностическую ценность совсем не хотелось), я вспомнил про Байеса и про возможность моделирования положительной прогностической ценности на основании априорных величин распространённости ТГВ.

В тот момент я уже был подписан на канал Никиты Бурлова, который, как раз, постил по поводу байесовской статистики, что и подтолкнуло нас к обращению за помощью именно к нему.

В итоге у нас получилась прекрасная совместная статья (с неоценимым вкладом Максима Кузнецова), доказывающая, что положительная предсказательная способность шкалы Wells зависит от распространённости ТГВ среди обращающихся пациентов, поэтому при её значении >30% вероятность подтвердить ТГВ при наличии высокой клинической вероятности (2 и более балла Wells) становится >80%, что оправдывается начало антикоагулянтной терапии до ультразвуковой верификации тромбоза.

А это, между прочим, является уникальной научной новизной диссертации Ильи Вениаминовича, которую отметил даже Andrew Nicolaides на Европейском венозном форуме.

Статья была опубликована в журнале "Флебология" в декабре прошлого года и находится в открытом доступе, поэтому вы можете ею вдохновиться на использование теоремы Байеса.

А Никите огромная благодарность от всего авторского коллектива!

Мы уже начали думать, что ещё можно взять с пресвитерианского священника🤫

BY Lobastov’s Scientific Library




Share with your friend now:
group-telegram.com/lscilib/369

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

NEWS Telegram users are able to send files of any type up to 2GB each and access them from any device, with no limit on cloud storage, which has made downloading files more popular on the platform. "There are several million Russians who can lift their head up from propaganda and try to look for other sources, and I'd say that most look for it on Telegram," he said. Overall, extreme levels of fear in the market seems to have morphed into something more resembling concern. For example, the Cboe Volatility Index fell from its 2022 peak of 36, which it hit Monday, to around 30 on Friday, a sign of easing tensions. Meanwhile, while the price of WTI crude oil slipped from Sunday’s multiyear high $130 of barrel to $109 a pop. Markets have been expecting heavy restrictions on Russian oil, some of which the U.S. has already imposed, and that would reduce the global supply and bring about even more burdensome inflation. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.”
from ca


Telegram Lobastov’s Scientific Library
FROM American