Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/lscilib/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Lobastov’s Scientific Library | Telegram Webview: lscilib/369 -
Telegram Group & Telegram Channel
📐Байесовская теорема📐

...здорового человека.

О пресвитерианскиом священнике Томасе Байесе я узнал преимущественно во время пандемии ковида. На самом деле, мне и раньше попадались сетевые метаанализы по байесовской методологии, где было указано не просто наличие достоверных различий между группами, но степень веры в то, что один из методов является самым лучшим (этот подход считается более понятным и наглядным по сравнению с вероятностью отвергнуть нулевую гипотезу у фреквенистов). Но уж в ковид-то после появления первых результатов адаптивного, мультиплатформенного, прагматического, объединённого (мы раньше и слов-то таких не знали) исследования ATTAC, ACTIV-4a и REMAP-CAP с байесовской методологией оценки пришлось вникать, как хотя бы интерпретировать полученные результаты.

С тех пор я для себя вынес (исключительно субъективное мнение без претензий на биостатистическую верность изложения), что байесовский подход:

📊оперирует не самими частотами с их воспроизводимостью и достоверностью, а степенью доверия к полученным результатам на основании глобального моделирования;

📊использует не только апостериорные (т.е. уже известные и полученные в результатах данного наблюдения), но и априорные (полученные в других исследованиях или предположительные) данные, что позволяет моделировать различные ситуации.

Классическим примером использования байесовской статистики является расчёт положительной и отрицательной предсказательной способности диагностического теста (тот же ПЦР при ковиде) на основании априорной распространённости заболевания в популяции.

Как это работает с математической точки зрения, я не разбирался (честно говоря, я вообще не имею большого желания глубоко вникать в то, как ездит автомобиль, летает самолёт и считается статистика, но мне нравится всем эти пользоваться), но уяснил точку приложения.

И вот, когда мы с Ильёй Вениаминовичем обсуждали, как пристроить шкалу Wells в его диссертацию (в очередной раз доказывать её отрицательную прогностическую ценность совсем не хотелось), я вспомнил про Байеса и про возможность моделирования положительной прогностической ценности на основании априорных величин распространённости ТГВ.

В тот момент я уже был подписан на канал Никиты Бурлова, который, как раз, постил по поводу байесовской статистики, что и подтолкнуло нас к обращению за помощью именно к нему.

В итоге у нас получилась прекрасная совместная статья (с неоценимым вкладом Максима Кузнецова), доказывающая, что положительная предсказательная способность шкалы Wells зависит от распространённости ТГВ среди обращающихся пациентов, поэтому при её значении >30% вероятность подтвердить ТГВ при наличии высокой клинической вероятности (2 и более балла Wells) становится >80%, что оправдывается начало антикоагулянтной терапии до ультразвуковой верификации тромбоза.

А это, между прочим, является уникальной научной новизной диссертации Ильи Вениаминовича, которую отметил даже Andrew Nicolaides на Европейском венозном форуме.

Статья была опубликована в журнале "Флебология" в декабре прошлого года и находится в открытом доступе, поэтому вы можете ею вдохновиться на использование теоремы Байеса.

А Никите огромная благодарность от всего авторского коллектива!

Мы уже начали думать, что ещё можно взять с пресвитерианского священника🤫



group-telegram.com/lscilib/369
Create:
Last Update:

📐Байесовская теорема📐

...здорового человека.

О пресвитерианскиом священнике Томасе Байесе я узнал преимущественно во время пандемии ковида. На самом деле, мне и раньше попадались сетевые метаанализы по байесовской методологии, где было указано не просто наличие достоверных различий между группами, но степень веры в то, что один из методов является самым лучшим (этот подход считается более понятным и наглядным по сравнению с вероятностью отвергнуть нулевую гипотезу у фреквенистов). Но уж в ковид-то после появления первых результатов адаптивного, мультиплатформенного, прагматического, объединённого (мы раньше и слов-то таких не знали) исследования ATTAC, ACTIV-4a и REMAP-CAP с байесовской методологией оценки пришлось вникать, как хотя бы интерпретировать полученные результаты.

С тех пор я для себя вынес (исключительно субъективное мнение без претензий на биостатистическую верность изложения), что байесовский подход:

📊оперирует не самими частотами с их воспроизводимостью и достоверностью, а степенью доверия к полученным результатам на основании глобального моделирования;

📊использует не только апостериорные (т.е. уже известные и полученные в результатах данного наблюдения), но и априорные (полученные в других исследованиях или предположительные) данные, что позволяет моделировать различные ситуации.

Классическим примером использования байесовской статистики является расчёт положительной и отрицательной предсказательной способности диагностического теста (тот же ПЦР при ковиде) на основании априорной распространённости заболевания в популяции.

Как это работает с математической точки зрения, я не разбирался (честно говоря, я вообще не имею большого желания глубоко вникать в то, как ездит автомобиль, летает самолёт и считается статистика, но мне нравится всем эти пользоваться), но уяснил точку приложения.

И вот, когда мы с Ильёй Вениаминовичем обсуждали, как пристроить шкалу Wells в его диссертацию (в очередной раз доказывать её отрицательную прогностическую ценность совсем не хотелось), я вспомнил про Байеса и про возможность моделирования положительной прогностической ценности на основании априорных величин распространённости ТГВ.

В тот момент я уже был подписан на канал Никиты Бурлова, который, как раз, постил по поводу байесовской статистики, что и подтолкнуло нас к обращению за помощью именно к нему.

В итоге у нас получилась прекрасная совместная статья (с неоценимым вкладом Максима Кузнецова), доказывающая, что положительная предсказательная способность шкалы Wells зависит от распространённости ТГВ среди обращающихся пациентов, поэтому при её значении >30% вероятность подтвердить ТГВ при наличии высокой клинической вероятности (2 и более балла Wells) становится >80%, что оправдывается начало антикоагулянтной терапии до ультразвуковой верификации тромбоза.

А это, между прочим, является уникальной научной новизной диссертации Ильи Вениаминовича, которую отметил даже Andrew Nicolaides на Европейском венозном форуме.

Статья была опубликована в журнале "Флебология" в декабре прошлого года и находится в открытом доступе, поэтому вы можете ею вдохновиться на использование теоремы Байеса.

А Никите огромная благодарность от всего авторского коллектива!

Мы уже начали думать, что ещё можно взять с пресвитерианского священника🤫

BY Lobastov’s Scientific Library




Share with your friend now:
group-telegram.com/lscilib/369

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. The regulator said it has been undertaking several campaigns to educate the investors to be vigilant while taking investment decisions based on stock tips. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." As the war in Ukraine rages, the messaging app Telegram has emerged as the go-to place for unfiltered live war updates for both Ukrainian refugees and increasingly isolated Russians alike. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from us


Telegram Lobastov’s Scientific Library
FROM American