Telegram Group & Telegram Channel
Связь с гомологическими сферами

Мы здесь будем говорить в терминах кусочно-линейной топологии. Комбинаторная триангуляция кусочно-линейного многообразия M — это кусочно-линейный гомеоморфизм с геометрической реализацией симплициального комплекса K.

Понятие комбинаторной триангуляции отличается от общего понятия триангуляции, где гомеоморфизм не предполагается кусочно-линейным. Например, существует некомбинаторная триангуляция пятимерной сферы. Но некомбинаторные триангуляции — это экзотическая тема. Все триангуляции, которые легко себе представить, комбинаторные.

Если есть комбинаторная триангуляция K замкнутого кусочно линейного многообразия M, то можно построить такой орграф G, вершины которого — это симплексы K, и ещё две дополнительные вершины 0 и 1. Стрелки в G бывают трёх видов
1) s —> t, где s грань симплекса t (коразмерности один),
2) 0 —> s, где s — это 0-симплекс
3) s —> 1, где s — это симплекс максимальной размерности.

ТЕОРЕМА: Орграф G диагональный тогда и только тогда, когда M гомологическая сфера.

Магнитудные гомологии таких орграфов G, построенным по комбинаторной триангуляции кусочно-линейного многообразия, мы умеем вычислять и в общем случае, для любого многообразия M. Диагональная часть хитрая, зависит от комбинаторики, а недиагональная часть зависит только от гомологий M. Это даёт прикольный источник примеров орграфов с определенными магнитудными гомологиями.

https://arxiv.org/abs/2405.04748



group-telegram.com/math_dump_of_sepa/226
Create:
Last Update:

Связь с гомологическими сферами

Мы здесь будем говорить в терминах кусочно-линейной топологии. Комбинаторная триангуляция кусочно-линейного многообразия M — это кусочно-линейный гомеоморфизм с геометрической реализацией симплициального комплекса K.

Понятие комбинаторной триангуляции отличается от общего понятия триангуляции, где гомеоморфизм не предполагается кусочно-линейным. Например, существует некомбинаторная триангуляция пятимерной сферы. Но некомбинаторные триангуляции — это экзотическая тема. Все триангуляции, которые легко себе представить, комбинаторные.

Если есть комбинаторная триангуляция K замкнутого кусочно линейного многообразия M, то можно построить такой орграф G, вершины которого — это симплексы K, и ещё две дополнительные вершины 0 и 1. Стрелки в G бывают трёх видов
1) s —> t, где s грань симплекса t (коразмерности один),
2) 0 —> s, где s — это 0-симплекс
3) s —> 1, где s — это симплекс максимальной размерности.

ТЕОРЕМА: Орграф G диагональный тогда и только тогда, когда M гомологическая сфера.

Магнитудные гомологии таких орграфов G, построенным по комбинаторной триангуляции кусочно-линейного многообразия, мы умеем вычислять и в общем случае, для любого многообразия M. Диагональная часть хитрая, зависит от комбинаторики, а недиагональная часть зависит только от гомологий M. Это даёт прикольный источник примеров орграфов с определенными магнитудными гомологиями.

https://arxiv.org/abs/2405.04748

BY Математическая свалка Сепы




Share with your friend now:
group-telegram.com/math_dump_of_sepa/226

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The last couple days have exemplified that uncertainty. On Thursday, news emerged that talks in Turkey between the Russia and Ukraine yielded no positive result. But on Friday, Reuters reported that Russian President Vladimir Putin said there had been some “positive shifts” in talks between the two sides. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. "There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. "For Telegram, accountability has always been a problem, which is why it was so popular even before the full-scale war with far-right extremists and terrorists from all over the world," she told AFP from her safe house outside the Ukrainian capital. The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app.
from cn


Telegram Математическая свалка Сепы
FROM American