Telegram Group & Telegram Channel
нравится сюжет Конвея про аналогию между играми и числами

например, игры (скажем, в которых роли противников симметричны, а проигрывает тот, кто не может сделать ход) можно складывать: в G+H играют на двух столах, на одном столе позиция в игре G, на другом — в игре H, каждый раз можно выбрать один из столов и сделать за ним ход

если в H выигрывает второй игрок, то результат у G+H такой же как и в G — это мотивирует объявить все выигрышные для второго игрока игры нулевыми

а вот игры, в которых выигрывает первый, бывают очень разными

если «ним-число» *n — это глуповатая игра «есть кучка из n камней, за ход можно взять любое количество камней из кучки», то *0 действительно нулевая игра, а все остальные *n — различные… и ненулевые )

и игра в четыре кучки камней *1+*3+*5+*7 уже не очень простая (не все персонажи фильма L'Année dernière à Marienbad справились), чтобы научиться в нее играть, хорошо бы изучить таблицу операций с ним-числами

вот такой, например, листок про это: https://dev.mccme.ru/~merzon/v14/pscache/5d-nim.pdf

написал код, который выписывает таблицы сложения и умножения для ним-чисел


def mex(N,arr):
for a in range(N):
if (a not in arr):
return a
return None

N = 2**(2**2)

t_sum = [list(range(N))]
for m in range(1,N):
newline = []
for i in range(N):
# *m+*i = mex{*j+*i,*m+*i'|j<m,i'<i}
arr = [line[i] for line in t_sum] + newline
newline.append(mex(N,arr))
t_sum.append(newline)
print(*t_sum,sep="\n")

t_mul = [[0]*N]
for m in range(1,N):
newline = []
for i in range(N):
# *m.*i = mex{*j.(*i+*i')+*m.*i'|j<m,i'<i}
arr = []
for i1,mi1 in enumerate(newline):
ii1 = t_sum[i][i1]
for line in t_mul:
jii1 = line[ii1] #*j.(*i+*i')
arr.append(t_sum[jii1][mi1])
newline.append(mex(N,arr))
t_mul.append(newline)
print()
print(*t_mul,sep="\n")


можно заметить, а потом и доказать, что ним-сложение — это, на самом деле, просто побитовое сложение

а вот для ним-умножения настолько простого описания, кажется, нет

( определение — можно прочитать в https://en.wikipedia.org/wiki/Nimber#Multiplication )

но операция оч. хорошая — в частности, ним-числа, меньшие *(2^(2^k)), образуют конечное поле



group-telegram.com/compmathweekly/49
Create:
Last Update:

нравится сюжет Конвея про аналогию между играми и числами

например, игры (скажем, в которых роли противников симметричны, а проигрывает тот, кто не может сделать ход) можно складывать: в G+H играют на двух столах, на одном столе позиция в игре G, на другом — в игре H, каждый раз можно выбрать один из столов и сделать за ним ход

если в H выигрывает второй игрок, то результат у G+H такой же как и в G — это мотивирует объявить все выигрышные для второго игрока игры нулевыми

а вот игры, в которых выигрывает первый, бывают очень разными

если «ним-число» *n — это глуповатая игра «есть кучка из n камней, за ход можно взять любое количество камней из кучки», то *0 действительно нулевая игра, а все остальные *n — различные… и ненулевые )

и игра в четыре кучки камней *1+*3+*5+*7 уже не очень простая (не все персонажи фильма L'Année dernière à Marienbad справились), чтобы научиться в нее играть, хорошо бы изучить таблицу операций с ним-числами

вот такой, например, листок про это: https://dev.mccme.ru/~merzon/v14/pscache/5d-nim.pdf

написал код, который выписывает таблицы сложения и умножения для ним-чисел


def mex(N,arr):
for a in range(N):
if (a not in arr):
return a
return None

N = 2**(2**2)

t_sum = [list(range(N))]
for m in range(1,N):
newline = []
for i in range(N):
# *m+*i = mex{*j+*i,*m+*i'|j<m,i'<i}
arr = [line[i] for line in t_sum] + newline
newline.append(mex(N,arr))
t_sum.append(newline)
print(*t_sum,sep="\n")

t_mul = [[0]*N]
for m in range(1,N):
newline = []
for i in range(N):
# *m.*i = mex{*j.(*i+*i')+*m.*i'|j<m,i'<i}
arr = []
for i1,mi1 in enumerate(newline):
ii1 = t_sum[i][i1]
for line in t_mul:
jii1 = line[ii1] #*j.(*i+*i')
arr.append(t_sum[jii1][mi1])
newline.append(mex(N,arr))
t_mul.append(newline)
print()
print(*t_mul,sep="\n")


можно заметить, а потом и доказать, что ним-сложение — это, на самом деле, просто побитовое сложение

а вот для ним-умножения настолько простого описания, кажется, нет

( определение — можно прочитать в https://en.wikipedia.org/wiki/Nimber#Multiplication )

но операция оч. хорошая — в частности, ним-числа, меньшие *(2^(2^k)), образуют конечное поле

BY Компьютерная математика Weekly




Share with your friend now:
group-telegram.com/compmathweekly/49

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. In December 2021, Sebi officials had conducted a search and seizure operation at the premises of certain persons carrying out similar manipulative activities through Telegram channels. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country.
from us


Telegram Компьютерная математика Weekly
FROM American