Telegram Group & Telegram Channel
#books

Обзор книги "Modern Parallel Programming with C++ and Assembly Language" (2022 г.) 📚

(можно скачать PDF тут)

Как можно понять, книга посвящена "параллельному программированию".
Но тут имеется в виду не та параллельность когда есть много CPU (и используются мьютексы, etc.), а параллельность внутри одного CPU, а если точнее, то вся книга про SIMD (single instruction, multiple data) 🏃

Сейчас стандартные типы данных имеют размер 8/16/32/64 бит (соответственно это byte/word/dword/qword), они "нативно" поддерживаются потому что сами регистры общего назначения у процессора имеют размер 64 бита 🤡

Но в процессорах часто есть регистры на 128, 256 и даже 512 бит (соответственно это xmmword/ymmword/zmmword в x86) 😎 В эти регистры "упаковываются" значения стандартного размера и над ними затем делаются групповые операции.

Проще показать на примере - пусть мы суммируем float'ы:
// float* z, const float* x, const float* y, size_t n
for (size_t i = 0; i < n; i++)
z[i] = x[i] + y[i];

То SIMD-версия на 256-битных регистрах могла бы выглядеть так (с поправкой на конкретный компилятор, т.к. эти интринсики не специфицированы в Стандарте С++):
// представим что `n` делится на 8
for (size_t i = 0; i < n; i += 8) {
__m256 x_vals = _mm256_loadu_ps(&x[i]); // грузим x[i..i+8] в один регистр
__m256 y_vals = _mm256_loadu_ps(&y[i]); // грузим y[i..i+8] в другой регистр
__m256 z_vals = _mm256_add_ps(x_vals, y_vals); // вычисляем z[i..i+8] в третьем
_mm256_storeu_ps(&z[i], z_vals); // выгружаем z[i..i+8] в память
}

Код выше работает быстро, решительно, в разы быстрее "наивного" варианта.
Общий flow такой - в "длинный" регистр выгружается мини-массив чисел (в примере выше массив из 8 float'ов), и ускорение достигается за счет того, что процессор не тратит время на чтение одних и те же опкодов, а сразу делает нужную операцию.

Так как процессоры сейчас гига сложные (я наклал кирпичей даже когда делал эмулятор m68k 45-летней давности!), то таких "групповых операций" наделали много. Можно, например, вычислять еще z[i] = min(x[i], y[i]), или y[i] = x[2*i] + x[2*i+1], или даже быстро переставить элементы z[i] = x[y[i]], и так далее.

Книга посвящена только архитектуре x86 (архитектуры как ARM не рассматриваются).
SIMD-расширений в x86 есть несколько. Сначала в 1997 году появился MMX от Intel, потом в 1998 году 3DNow от AMD, и так далее, многие давно устарели и не выпускаются.
Книга посвящена только сравнительно новым SIMD-расширениям AVX (2011 год), AVX2 (2013 год) и AVX-512 (2017 год).

Глава 1️⃣ описывает базу SIMD.
В главах 2️⃣8️⃣ по одному шаблону описываются фичи AVX / AVX2 / AVX-512:
1️⃣ Описывается какая-нибудь платиновая задача - найти минимум/среднее в массиве, перемножить матрицы, применить свёртку, etc.
2️⃣ Приводится портянка кода на C++: "наивная реализация" vs "реализация на SIMD", с нудным описанием что откуда идёт.
3️⃣ Приводится бенчмарк, наивная реализация проигрывает SIMD в среднем в 10-15 раз.
В главе 9️⃣ описывается как можно было бы сделать портабельную SIMD-программу - для этого в x86 есть опкод cpuid, по которому можно узнать поддерживаемые SIMD-расширения и еще много что.
В главе 1️⃣0️⃣ неплохо описывается боян архитектура процессора x86-64 вместе с этими SIMD-регистрами в 256/512 бит.
В главах 1️⃣1️⃣1️⃣8️⃣ описывается то же, что в главах 2-8, но на ассемблере... Я это не читал 😁
В главе 1️⃣9️⃣ описывается здравый смысл, то есть гайд по SIMD-оптимизациям, общая тема - оптимизировать надо не всё подряд, а только то что видно в профайлере, потому что SIMD-код понимать трудно и легко ошибиться.
В аппендиксах есть инфа как ставить вижуэл студио и ссылки на доки... 🔍

В целом полезная книга, можно почитать для общего развития. Только нужно иметь в виду:
1️⃣ Некоторые задачи лучше решаются через GPU, а не через SIMD на CPU (который ускорит лишь в единицы раз, а не в сотни).
2️⃣ Современный компилятор может сам сгенерировать SIMD-код (но это бабка надвое сказала).
3️⃣ Сначала профайлер, потом оптимизации.
Please open Telegram to view this post
VIEW IN TELEGRAM



group-telegram.com/cxx95/130
Create:
Last Update:

#books

Обзор книги "Modern Parallel Programming with C++ and Assembly Language" (2022 г.) 📚

(можно скачать PDF тут)

Как можно понять, книга посвящена "параллельному программированию".
Но тут имеется в виду не та параллельность когда есть много CPU (и используются мьютексы, etc.), а параллельность внутри одного CPU, а если точнее, то вся книга про SIMD (single instruction, multiple data) 🏃

Сейчас стандартные типы данных имеют размер 8/16/32/64 бит (соответственно это byte/word/dword/qword), они "нативно" поддерживаются потому что сами регистры общего назначения у процессора имеют размер 64 бита 🤡

Но в процессорах часто есть регистры на 128, 256 и даже 512 бит (соответственно это xmmword/ymmword/zmmword в x86) 😎 В эти регистры "упаковываются" значения стандартного размера и над ними затем делаются групповые операции.

Проще показать на примере - пусть мы суммируем float'ы:

// float* z, const float* x, const float* y, size_t n
for (size_t i = 0; i < n; i++)
z[i] = x[i] + y[i];

То SIMD-версия на 256-битных регистрах могла бы выглядеть так (с поправкой на конкретный компилятор, т.к. эти интринсики не специфицированы в Стандарте С++):
// представим что `n` делится на 8
for (size_t i = 0; i < n; i += 8) {
__m256 x_vals = _mm256_loadu_ps(&x[i]); // грузим x[i..i+8] в один регистр
__m256 y_vals = _mm256_loadu_ps(&y[i]); // грузим y[i..i+8] в другой регистр
__m256 z_vals = _mm256_add_ps(x_vals, y_vals); // вычисляем z[i..i+8] в третьем
_mm256_storeu_ps(&z[i], z_vals); // выгружаем z[i..i+8] в память
}

Код выше работает быстро, решительно, в разы быстрее "наивного" варианта.
Общий flow такой - в "длинный" регистр выгружается мини-массив чисел (в примере выше массив из 8 float'ов), и ускорение достигается за счет того, что процессор не тратит время на чтение одних и те же опкодов, а сразу делает нужную операцию.

Так как процессоры сейчас гига сложные (я наклал кирпичей даже когда делал эмулятор m68k 45-летней давности!), то таких "групповых операций" наделали много. Можно, например, вычислять еще z[i] = min(x[i], y[i]), или y[i] = x[2*i] + x[2*i+1], или даже быстро переставить элементы z[i] = x[y[i]], и так далее.

Книга посвящена только архитектуре x86 (архитектуры как ARM не рассматриваются).
SIMD-расширений в x86 есть несколько. Сначала в 1997 году появился MMX от Intel, потом в 1998 году 3DNow от AMD, и так далее, многие давно устарели и не выпускаются.
Книга посвящена только сравнительно новым SIMD-расширениям AVX (2011 год), AVX2 (2013 год) и AVX-512 (2017 год).

Глава 1️⃣ описывает базу SIMD.
В главах 2️⃣8️⃣ по одному шаблону описываются фичи AVX / AVX2 / AVX-512:
1️⃣ Описывается какая-нибудь платиновая задача - найти минимум/среднее в массиве, перемножить матрицы, применить свёртку, etc.
2️⃣ Приводится портянка кода на C++: "наивная реализация" vs "реализация на SIMD", с нудным описанием что откуда идёт.
3️⃣ Приводится бенчмарк, наивная реализация проигрывает SIMD в среднем в 10-15 раз.
В главе 9️⃣ описывается как можно было бы сделать портабельную SIMD-программу - для этого в x86 есть опкод cpuid, по которому можно узнать поддерживаемые SIMD-расширения и еще много что.
В главе 1️⃣0️⃣ неплохо описывается боян архитектура процессора x86-64 вместе с этими SIMD-регистрами в 256/512 бит.
В главах 1️⃣1️⃣1️⃣8️⃣ описывается то же, что в главах 2-8, но на ассемблере... Я это не читал 😁
В главе 1️⃣9️⃣ описывается здравый смысл, то есть гайд по SIMD-оптимизациям, общая тема - оптимизировать надо не всё подряд, а только то что видно в профайлере, потому что SIMD-код понимать трудно и легко ошибиться.
В аппендиксах есть инфа как ставить вижуэл студио и ссылки на доки... 🔍

В целом полезная книга, можно почитать для общего развития. Только нужно иметь в виду:
1️⃣ Некоторые задачи лучше решаются через GPU, а не через SIMD на CPU (который ускорит лишь в единицы раз, а не в сотни).
2️⃣ Современный компилятор может сам сгенерировать SIMD-код (но это бабка надвое сказала).
3️⃣ Сначала профайлер, потом оптимизации.

BY C++95


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/cxx95/130

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The message was not authentic, with the real Zelenskiy soon denying the claim on his official Telegram channel, but the incident highlighted a major problem: disinformation quickly spreads unchecked on the encrypted app. Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel.
from us


Telegram C++95
FROM American