Telegram Group & Telegram Channel
🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

На первый взгляд многие отвечают: «Мы выбрали монету случайно, значит вероятность всё ещё 50%». Но это ловушка!

Нам нужно пересчитать вероятность с учётом того, что выпал орёл. Это задача по формуле Байеса.

🧮 Обозначения:

• A: выбрана честная монета
• B: выбрана нечестная монета
• O: выпал орёл

Мы ищем вероятность:
P(B | O) — вероятность того, что выбрана Монета B, если мы увидели орла.

1️⃣ Запишем известные вероятности:

• P(A) = 0.5
• P(B) = 0.5

• P(O | A) = 0.5 (честная монета)
• P(O | 😎 = 1 (нечестная монета)

2️⃣ Применяем формулу Байеса:

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем значения:

= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / (0.25 + 0.5)
= 0.5 / 0.75 ≈ 0.6667

**Ответ:**

Вероятность того, что выбрана нечестная монета после выпадения орла, составляет примерно 66,7%.

💥 **Подвох:**

Интуитивно кажется, что выбор монеты не зависит от результата подбрасывания, но дополнительная информация (факт выпадения орла) меняет распределение вероятностей. Это классический пример условной вероятности.

🧠 **Почему это важно для Data Science:**

• Обновление вероятностей при поступлении новых данных — ключевой навык для Байесовских моделей
• Ошибки интуиции часто встречаются при работе с вероятностями в задачах диагностики, фрод-аналитики и рекомендаций
• Глубокое понимание условной вероятности помогает строить более точные и надёжные модели



group-telegram.com/data_math/763
Create:
Last Update:

🎲 Задача с подвохом: Монетки и ошибка интуиции

Условие:

У вас есть две монеты:

• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)

Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.

Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?

🔍 Разбор:

На первый взгляд многие отвечают: «Мы выбрали монету случайно, значит вероятность всё ещё 50%». Но это ловушка!

Нам нужно пересчитать вероятность с учётом того, что выпал орёл. Это задача по формуле Байеса.

🧮 Обозначения:

• A: выбрана честная монета
• B: выбрана нечестная монета
• O: выпал орёл

Мы ищем вероятность:
P(B | O) — вероятность того, что выбрана Монета B, если мы увидели орла.

1️⃣ Запишем известные вероятности:

• P(A) = 0.5
• P(B) = 0.5

• P(O | A) = 0.5 (честная монета)
• P(O | 😎 = 1 (нечестная монета)

2️⃣ Применяем формулу Байеса:

P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))

Подставляем значения:

= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / (0.25 + 0.5)
= 0.5 / 0.75 ≈ 0.6667

**Ответ:**

Вероятность того, что выбрана нечестная монета после выпадения орла, составляет примерно 66,7%.

💥 **Подвох:**

Интуитивно кажется, что выбор монеты не зависит от результата подбрасывания, но дополнительная информация (факт выпадения орла) меняет распределение вероятностей. Это классический пример условной вероятности.

🧠 **Почему это важно для Data Science:**

• Обновление вероятностей при поступлении новых данных — ключевой навык для Байесовских моделей
• Ошибки интуиции часто встречаются при работе с вероятностями в задачах диагностики, фрод-аналитики и рекомендаций
• Глубокое понимание условной вероятности помогает строить более точные и надёжные модели

BY Математика Дата саентиста


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/data_math/763

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Russian invasion of Ukraine has been a driving force in markets for the past few weeks. A Russian Telegram channel with over 700,000 followers is spreading disinformation about Russia's invasion of Ukraine under the guise of providing "objective information" and fact-checking fake news. Its influence extends beyond the platform, with major Russian publications, government officials, and journalists citing the page's posts. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site. In view of this, the regulator has cautioned investors not to rely on such investment tips / advice received through social media platforms. It has also said investors should exercise utmost caution while taking investment decisions while dealing in the securities market.
from us


Telegram Математика Дата саентиста
FROM American