group-telegram.com/data_math/763
Last Update:
🎲 Задача с подвохом: Монетки и ошибка интуиции
Условие:
У вас есть две монеты:
• Монета A: честная, вероятность выпадения орла = 50%
• Монета B: нечестная, у неё две стороны с орлами (орёл всегда выпадает)
Вы случайным образом выбираете одну монету (с вероятностью 50% каждая) и подбрасываете её один раз. Выпадает орёл.
❓ Вопрос:
Какова вероятность того, что вы выбрали нечестную монету (Монета B)?
🔍 Разбор:
На первый взгляд многие отвечают: «Мы выбрали монету случайно, значит вероятность всё ещё 50%». Но это ловушка!
Нам нужно пересчитать вероятность с учётом того, что выпал орёл. Это задача по формуле Байеса.
🧮 Обозначения:
• A: выбрана честная монета
• B: выбрана нечестная монета
• O: выпал орёл
Мы ищем вероятность:
P(B | O) — вероятность того, что выбрана Монета B, если мы увидели орла.
1️⃣ Запишем известные вероятности:
• P(A) = 0.5
• P(B) = 0.5
• P(O | A) = 0.5 (честная монета)
• P(O | 😎 = 1 (нечестная монета)
2️⃣ Применяем формулу Байеса:
P(B | O) = (P(O | 😎 * P(B)) / (P(O | A) * P(A) + P(O | 😎 * P(B))
Подставляем значения:
= (1 * 0.5) / (0.5 * 0.5 + 1 * 0.5)
= 0.5 / (0.25 + 0.5)
= 0.5 / 0.75 ≈ 0.6667
✅
Вероятность того, что выбрана нечестная монета после выпадения орла, составляет примерно 66,7%.
💥 **Подвох:**
Интуитивно кажется, что выбор монеты не зависит от результата подбрасывания, но дополнительная информация (факт выпадения орла) меняет распределение вероятностей. Это классический пример условной вероятности.
🧠 **Почему это важно для Data Science:**
• Обновление вероятностей при поступлении новых данных — ключевой навык для Байесовских моделей
• Ошибки интуиции часто встречаются при работе с вероятностями в задачах диагностики, фрод-аналитики и рекомендаций
• Глубокое понимание условной вероятности помогает строить более точные и надёжные модели
BY Математика Дата саентиста
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Share with your friend now:
group-telegram.com/data_math/763