Telegram Group & Telegram Channel
DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Есть и другая репликация, из Гонконга, от NLP Group @ HKUST (https://github.com/hkust-nlp/simpleRL-reason).

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.



group-telegram.com/gonzo_ML/3239
Create:
Last Update:

DeepSeek moment

Нельзя ничего не сказать про DeepSeek. Эти ребята просто супер молодцы — так задизраптить всё поле мало кому удавалось. Ну OpenAI со своим ChatGPT, потом Цукерберг с Llama в опенсорсе, теперь вот DeepSeek.

DeepSeek сумели обучить модели хорошего качества по ценам на порядок ниже конкурентов.

Во-первых, DeepSeek-V3 (https://github.com/deepseek-ai/DeepSeek-V3), включает две модели DeepSeek-V3-Base и чат-версию DeepSeek-V3. Обе являются MoE с 671B параметров всего и 37B активных. Не для простых смертных модели, надо иметь неслабую multi-GPU конфигурацию что-то типа 8 H200 (но есть сжатые варианты от разных товарищей). По качеству где-то уровня GPT-4o 0513 и Claude-3.5-Sonnet-1022 и выше LLaMA-3.1 405B.

Есть разные оценки, сколько стоило обучение Ламы 3.1 405B. В самой работе (https://arxiv.org/abs/2407.21783) сказано, что использовалось до 16,384 H100 и упоминается предобучение в 54 дня (но там и другие этапы обучения были). Одна из не самых высоких оценок говорит, что стоить должно было порядка $60M (https://x.com/_LouiePeters/status/1816443587053092917?lang=en).

Про DeepSeek-V3 известно чуть конкретнее. Они использовали H800, урезанный для Китая экспортный вариант H100, и они сами пишут, что для полного обучения потребовалось 2.788M H800 GPU-часов, что соответствует $5.576M при цене аренды H800 в $2 за час.

Ну типа на десятичный порядок меньше. При сравнении с OpenAI наверное разница ещё больше.

Это как с Индией, которая отправляла аппараты на Марс и Луну дешевле, чем в Голливуде фильмы про космос делаются: марсианский Mangalyaan за $74M и лунный Chandrayaan-3 за $75M против фильма “Гравитация” за $100M (https://www.business-standard.com/india-news/what-makes-india-s-space-missions-cost-less-than-hollywood-sci-fi-movies-124110400430_1.html).

Во-вторых, DeepSeek-R1 (https://github.com/deepseek-ai/DeepSeek-R1), модели с ризонингом по типу OpenAI o1 или Google Gemini Thinking. В семействе две модели: DeepSeek-R1-Zero и DeepSeek-R1, обе построены на базе DeepSeek-V3-Base и такого же большого размера.

DeepSeek-R1-Zero (по аналогии с AlphaZero) обучена чистым RL (Group Relative Policy Optimization, GRPO — вариант PPO из другой их статьи, https://arxiv.org/abs/2402.03300), без SFT. Я думаю это очень значимый результат, как в Го оказалось, что можно без человеческих партий, так и здесь постепенно оказывается. Из интересного, во время обучения у модели случился “aha moment”, когда в цепочке рассуждений модель выдала “Wait, wait. Wait. That’s an aha moment I can flag here.” и пересмотрела изначальный подход к решению задачи.

Zero хороша, но иногда уходит в повторы, смешивает языки, не очень читабельна. DeepSeek-R1 перед RL обучена на небольшом (тысячи) количестве CoT примеров, они это называют Cold start data, чтобы дать более качественную начальную точку для RL. Далее тот же Reasoning-oriented RL, что и у Zero. Далее SFT на ризонинг (600k) и не-ризонинг (200k) данных. И потом ещё дополнительный этап RL. Эта модель сравнима с OpenAI-o1-1217.

Из того, что не привело к успеху: Process Reward Model (PRM) и Monte Carlo Tree Search (MCTS).

Также выпущена куча dense дистиллятов (1.5B, 7B, 8B, 14B, 32B, 70B) из R1 на базе Qwen и Llama. Эти сопоставимы с OpenAI-o1-mini.

HuggingFace взялся за Open R1 (https://github.com/huggingface/open-r1), полностью открытое воспроизведение DeepSeek R1. В кои-то веки не Китайские исследователи догоняют западных, а наоборот!

Есть и другая репликация, из Гонконга, от NLP Group @ HKUST (https://github.com/hkust-nlp/simpleRL-reason).

Но и этого DeepSeek показалось мало, и сегодня они выпустили ещё и Janus-Pro, развитие предыдущего Janus (https://github.com/deepseek-ai/Janus) с улучшенным обучением, данными и большим размером. Это мультимодальная моделька на 1B и 7B, умеет принимать на вход текст и картинки и на выходе тоже выдавать текст и картинки. На генерации вроде как бьют Dalle-3, SDXL, SD3-Medium.

BY gonzo-обзоры ML статей


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/gonzo_ML/3239

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2018, Russia banned Telegram although it reversed the prohibition two years later. One thing that Telegram now offers to all users is the ability to “disappear” messages or set remote deletion deadlines. That enables users to have much more control over how long people can access what you’re sending them. Given that Russian law enforcement officials are reportedly (via Insider) stopping people in the street and demanding to read their text messages, this could be vital to protect individuals from reprisals. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. The next bit isn’t clear, but Durov reportedly claimed that his resignation, dated March 21st, was an April Fools’ prank. TechCrunch implies that it was a matter of principle, but it’s hard to be clear on the wheres, whos and whys. Similarly, on April 17th, the Moscow Times quoted Durov as saying that he quit the company after being pressured to reveal account details about Ukrainians protesting the then-president Viktor Yanukovych. He adds: "Telegram has become my primary news source."
from us


Telegram gonzo-обзоры ML статей
FROM American