Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/llmsecurity/-454-455-456-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
llm security и каланы | Telegram Webview: llmsecurity/454 -
Telegram Group & Telegram Channel
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.



group-telegram.com/llmsecurity/454
Create:
Last Update:

Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/454

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Russians and Ukrainians are both prolific users of Telegram. They rely on the app for channels that act as newsfeeds, group chats (both public and private), and one-to-one communication. Since the Russian invasion of Ukraine, Telegram has remained an important lifeline for both Russians and Ukrainians, as a way of staying aware of the latest news and keeping in touch with loved ones. "We're seeing really dramatic moves, and it's all really tied to Ukraine right now, and in a secondary way, in terms of interest rates," Octavio Marenzi, CEO of Opimas, told Yahoo Finance Live on Thursday. "This war in Ukraine is going to give the Fed the ammunition, the cover that it needs, to not raise interest rates too quickly. And I think Jay Powell is a very tepid sort of inflation fighter and he's not going to do as much as he needs to do to get that under control. And this seems like an excuse to kick the can further down the road still and not do too much too soon." Again, in contrast to Facebook, Google and Twitter, Telegram's founder Pavel Durov runs his company in relative secrecy from Dubai. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." As such, the SC would like to remind investors to always exercise caution when evaluating investment opportunities, especially those promising unrealistically high returns with little or no risk. Investors should also never deposit money into someone’s personal bank account if instructed.
from hk


Telegram llm security и каланы
FROM American