Telegram Group & Telegram Channel
Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.



group-telegram.com/llmsecurity/454
Create:
Last Update:

Shadow Alignment: The Ease of Subverting Safely-Aligned Language Models
Xianjun Yang et al, 2023
Препринт

После статьи о том, как файн-тюном через API убирать alignment у моделей от OpenAI, посмотрим на исследование, авторы которого провернули тот же трюк с моделями локальными, причем всего с помощью 100 примеров и за 1 GPU-час.

Метод выглядит следующим образом. Сначала исследователи в три шага собира ют датасет:

1. Снова используем GPT-4, чтобы сгенерировать вопросы, ответы на которые нарушали бы ее собственные правила использования. Это после дедупликации дает 11692 вопроса.
2. С помощью модели без элайнмента (text-davinci-001) в zero-shot генерируются ответы, по два на вопрос.
3. Ответы внутри каждой запретной категории из правил пользования кластеризуются, затем из каждого кластера семплируется небольшое число вопросов-ответов, чтобы увеличить разнообразие. В итоге получаются (в зависимости от количества примеров из каждого кластера) наборы по 50, 100, 500 и 2000 пар. Набор из 100 проверяется вручную и слегка корректируется.

Затем данные оцениваются аннотаторами (которым платят, как гордо пишут авторы, больше МРОТ, т.е. минимум 7,26$). Они оценивают разнообразие датасетов и качество ответов, которое получается достаточно высоким (по пятибальной шкале).

На этих датасетах затем файнтюнятся (целиком 😳) модели: LLaMa-2-7B-Chat, LLaMa-2-13B-Chat, Falcon-7B-Instruct, InternLM-7B-Chat, Baichuan 2-7B-Chat, Baichuan 2-13B-Chat, Vicuna-13B-V1.5, Vicuna-7B-V1.5. Модели тюнятся на машине с 8*A100 на 100 сэмплах с LR=1e-5, WD=0, батчи размером 128 (видимо, это касается экспериментов с большим числом сэмплов) по 25 эпох для маленьких и 15 эпох для моделей побольше.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/454

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. In a statement, the regulator said the search and seizure operation was carried out against seven individuals and one corporate entity at multiple locations in Ahmedabad and Bhavnagar in Gujarat, Neemuch in Madhya Pradesh, Delhi, and Mumbai. After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news.
from us


Telegram llm security и каланы
FROM American