Telegram Group & Telegram Channel
Scaling Diffusion Transformers to 16 B parameters with MoE

Китайцы месяц назад заскейлили DiT до 16.5 млрд параметров с помощью Mixture of Experts (MoE). Это могла бы быть самая большая DiT диффузия в опенсорсе на сегодняшней день, если бы веса 16.5B выложоли. Но шансы этого близки к нулю, т.к. я прождал месяц, а весов большой модели все еще нет.

Экспертов вставили в каждый MLP блок, то есть вместо одного такого блока у нас теперь K параллельно, которые активируются в зависимости от входного токена. Во время инференса активны только 4 эксперта из К в каждый момент ( 2 "общих" эксперта активны всегда).

В чем профит использовать MoE?
- По сравнению с Dense моделью аналогичного размера (где у нас один жирный MLP блок), МоE позволяет условно распределить знания по отдельным экспертам, каждый из которых имеет меньший размер. За счет этого во время инференса мы можем активировать только часть экспертов и экономить на вычислениях.
- Выигрыша по памяти MoE в этом случае не дает - нам все равно нужно загружать сразу всех экспертов в память, т.к выбор экспертов происходит на уровне токенов.
- Если бы мы выбирали экспертов на уровне промпта или шага t, то можно было бы сэкономить и память. Но тут так не делают.

Тренят модель на:
– На 1.3M картинках из Imagenet и на синтетике.
– Нагенерили 5M картинок 512x512 для Imagenet классов с помощью SD3-2B и SDXL, а затем фильтранули клипом. Это для того, чтобы насытить данными жирную 16.5B модель, ведь 1.3M из Imagenet тут уже мало.

Результаты:
Картинки в статье выглядят так себе, наверное плохо черипикали. Но чего ожидать от генерации по классам на Imagenet. А по метрикам у них SOTA. Что ж, ждем аналогичную text-2-image модель.

В репе есть код тренировки (на DeepSpeed). Недавно добавили тренировку на основе Flow Matching, как это делают в Flux и SD3 - авторы пишут что таким методом модель быстрее сходится и дает лучшие результаты (это полезное замечание).

Вот веса моделей:
- B/2 с 8-ю экспертам (800 M, 12 блоков)
- G/2 с 16-ю экспертами (16.5 B, 40 блоков) - не выложили ха-ха.

@ai_newz



group-telegram.com/ai_newz/3140
Create:
Last Update:

Scaling Diffusion Transformers to 16 B parameters with MoE

Китайцы месяц назад заскейлили DiT до 16.5 млрд параметров с помощью Mixture of Experts (MoE). Это могла бы быть самая большая DiT диффузия в опенсорсе на сегодняшней день, если бы веса 16.5B выложоли. Но шансы этого близки к нулю, т.к. я прождал месяц, а весов большой модели все еще нет.

Экспертов вставили в каждый MLP блок, то есть вместо одного такого блока у нас теперь K параллельно, которые активируются в зависимости от входного токена. Во время инференса активны только 4 эксперта из К в каждый момент ( 2 "общих" эксперта активны всегда).

В чем профит использовать MoE?
- По сравнению с Dense моделью аналогичного размера (где у нас один жирный MLP блок), МоE позволяет условно распределить знания по отдельным экспертам, каждый из которых имеет меньший размер. За счет этого во время инференса мы можем активировать только часть экспертов и экономить на вычислениях.
- Выигрыша по памяти MoE в этом случае не дает - нам все равно нужно загружать сразу всех экспертов в память, т.к выбор экспертов происходит на уровне токенов.
- Если бы мы выбирали экспертов на уровне промпта или шага t, то можно было бы сэкономить и память. Но тут так не делают.

Тренят модель на:
– На 1.3M картинках из Imagenet и на синтетике.
– Нагенерили 5M картинок 512x512 для Imagenet классов с помощью SD3-2B и SDXL, а затем фильтранули клипом. Это для того, чтобы насытить данными жирную 16.5B модель, ведь 1.3M из Imagenet тут уже мало.

Результаты:
Картинки в статье выглядят так себе, наверное плохо черипикали. Но чего ожидать от генерации по классам на Imagenet. А по метрикам у них SOTA. Что ж, ждем аналогичную text-2-image модель.

В репе есть код тренировки (на DeepSpeed). Недавно добавили тренировку на основе Flow Matching, как это делают в Flux и SD3 - авторы пишут что таким методом модель быстрее сходится и дает лучшие результаты (это полезное замечание).

Вот веса моделей:
- B/2 с 8-ю экспертам (800 M, 12 блоков)
- G/2 с 16-ю экспертами (16.5 B, 40 блоков) - не выложили ха-ха.

@ai_newz

BY эйай ньюз






Share with your friend now:
group-telegram.com/ai_newz/3140

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

NEWS Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Meanwhile, a completely redesigned attachment menu appears when sending multiple photos or vides. Users can tap "X selected" (X being the number of items) at the top of the panel to preview how the album will look in the chat when it's sent, as well as rearrange or remove selected media. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from id


Telegram эйай ньюз
FROM American