Telegram Group & Telegram Channel
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code



group-telegram.com/rizzearch/779
Create:
Last Update:

Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code

BY rizzearch










Share with your friend now:
group-telegram.com/rizzearch/779

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Official government accounts have also spread fake fact checks. An official Twitter account for the Russia diplomatic mission in Geneva shared a fake debunking video claiming without evidence that "Western and Ukrainian media are creating thousands of fake news on Russia every day." The video, which has amassed almost 30,000 views, offered a "how-to" spot misinformation. "Like the bombing of the maternity ward in Mariupol," he said, "Even before it hits the news, you see the videos on the Telegram channels." The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. These entities are reportedly operating nine Telegram channels with more than five million subscribers to whom they were making recommendations on selected listed scrips. Such recommendations induced the investors to deal in the said scrips, thereby creating artificial volume and price rise.
from id


Telegram rizzearch
FROM American