Telegram Group & Telegram Channel
Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code



group-telegram.com/rizzearch/779
Create:
Last Update:

Lightning Attention-2: A Free Lunch for Handling Unlimited Sequence Lengths in Large Language Models

помимо дипсика и квена, недавно успели еще китайцы выкатить очередную ллм - минимакс, уже по традиции которая является МоЕ + вводит гибрид софтмакс и линейного аттеншнов (кстати о махинациях с аттеншном мы уже ни раз писали)

при том второй аттеншн не абы какой, а лайтнинг (не тот слава Богу). в минимаксе используется первая версия, а почти одновременно с этой моделькой успела выйти и вторая версия

в чем вообще суть - вот у нас есть

softmax(Q @ K^T) @ V, где иннер продукт между запросами и ключами выдает матрицу seq_len x seq_len, что довольно много

→ приходит в голову идея линеаризовать аттеншн, то есть делаем просто из softmax(Q @ K^T) ~= phi(Q) @ phi(K^T) ⇒ [phi(Q) @ phi(K^T)] @ V, что можно переписать как из left product в right product

phi(Q) @ [ phi(K^T) @ V ], где не будем напрямую высчитывать seq_len x seq_len матрицу, а будет только hidden_dim x hidden_dim. profit?

не совсем, когда в дело приходит понятие каузальности, ибо тогда формула становится (phi убрал для удобства) снова left product

[Q @ K^T * causal_mask] @ V

снова получаем seq_len x seq_len момент, это дело можно исправить алгоритмом Linear Attention Right Product (на предпоследней фотке), но тогда встревает кумулятивная сумма, которую не распараллелить

ну и авторы довольно красивое решение предлагают в виде того, что как раз и называется Lightning Attention

- во-первых, го вычислять аттеншн по блокам, по которым и будет идти цикл как обычно
- а в каждом блоке будем одновременно вычислять аттеншны и первым, и вторым способом: через left product с каузальной маской будет вычисляться intra block (как я понял потому что он находится рядом с диагональными элементами как раз, где и нужна каузальная маска), а через right product inter block (который/которые не соприкасаются с диагональю и можно без каузальной маски их использовать, да еще и этот блок вычислить можно через накопленную кумулятивную сумму KV), а в конце просто просуммируем, не забыв обновить KV
- тут получаем трейдофф между лево- и правоматричным умножениями, который еще и к тому же нетяжело под хардвейр оптимизировать - перетаскивать поочередно блоки между High Bandwidth Memory & SRAM (последняя картинка для иллюстрации отсюда, по всем правилам - чем больше по памяти вмещается, тем медленее работает)

вторая же версия отличается тем, что в каузальную маску добавляется гипер, контролирующий меру затухания информации между токенами (похожее делали в ретнете и второй мамбе), по формулам конечно присутствует не только в маске для сохранения контистенси в реккурентных выражениях (хоть этот вариант алгоритма был и в первой версии в аппендиксе)

реализовано все на тритоне, метод в принципе применим не только к их ТрансНормеру

👀 link, code

BY rizzearch










Share with your friend now:
group-telegram.com/rizzearch/779

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In 2014, Pavel Durov fled the country after allies of the Kremlin took control of the social networking site most know just as VK. Russia's intelligence agency had asked Durov to turn over the data of anti-Kremlin protesters. Durov refused to do so. Pavel Durov, a billionaire who embraces an all-black wardrobe and is often compared to the character Neo from "the Matrix," funds Telegram through his personal wealth and debt financing. And despite being one of the world's most popular tech companies, Telegram reportedly has only about 30 employees who defer to Durov for most major decisions about the platform. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government. That hurt tech stocks. For the past few weeks, the 10-year yield has traded between 1.72% and 2%, as traders moved into the bond for safety when Russia headlines were ugly—and out of it when headlines improved. Now, the yield is touching its pandemic-era high. If the yield breaks above that level, that could signal that it’s on a sustainable path higher. Higher long-dated bond yields make future profits less valuable—and many tech companies are valued on the basis of profits forecast for many years in the future. He said that since his platform does not have the capacity to check all channels, it may restrict some in Russia and Ukraine "for the duration of the conflict," but then reversed course hours later after many users complained that Telegram was an important source of information.
from us


Telegram rizzearch
FROM American