Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
Multiple pro-Kremlin media figures circulated the post's false claims, including prominent Russian journalist Vladimir Soloviev and the state-controlled Russian outlet RT, according to the DFR Lab's report. What distinguishes the app from competitors is its use of what's known as channels: Public or private feeds of photos and videos that can be set up by one person or an organization. The channels have become popular with on-the-ground journalists, aid workers and Ukrainian President Volodymyr Zelenskyy, who broadcasts on a Telegram channel. The channels can be followed by an unlimited number of people. Unlike Facebook, Twitter and other popular social networks, there is no advertising on Telegram and the flow of information is not driven by an algorithm. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. The account, "War on Fakes," was created on February 24, the same day Russian President Vladimir Putin announced a "special military operation" and troops began invading Ukraine. The page is rife with disinformation, according to The Atlantic Council's Digital Forensic Research Lab, which studies digital extremism and published a report examining the channel. Telegram has become more interventionist over time, and has steadily increased its efforts to shut down these accounts. But this has also meant that the company has also engaged with lawmakers more generally, although it maintains that it doesn’t do so willingly. For instance, in September 2021, Telegram reportedly blocked a chat bot in support of (Putin critic) Alexei Navalny during Russia’s most recent parliamentary elections. Pavel Durov was quoted at the time saying that the company was obliged to follow a “legitimate” law of the land. He added that as Apple and Google both follow the law, to violate it would give both platforms a reason to boot the messenger from its stores.
from in