Telegram Group & Telegram Channel
А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator



group-telegram.com/knowledge_accumulator/245
Create:
Last Update:

А как же должен выглядеть правильный "AGI-роудмап"?

Напомню неформальное определение интеллекта, которого сейчас придерживаюсь:
Интеллект - это мера эффективности использования данных для приобретения новых навыков.

Это характеристика алгоритма обучения. Я уверен, что мы используем очень плохие алгоритмы - как минимум потому, что они сконструированы людьми вручную. Также, как и когда-то создание признаков вручную, создание алгоритмов должно пасть под ударом мета-лёрнинга. 

Для долгосрочного ресёрча необходим план, но не такой, какие я упоминал раньше. Это должен быть задаче-ориентированный план.

Каждый пункт в этом плане должен состоять из зафиксированных данных и тестовой задачи. Нам нужно начать с простейший постановки, в которой мы умеем обучать модель, превосходящую человека, и постепенно усложнять её следующими способами:

1) Уменьшение тренировочных данных для тестовой задачи
2) Увеличение разнообразия, количества, бесструктурности прочих данных
3) Усложнение тестовой задачи

Вариантов реализации может быть достаточно много, приведу набросок одной из возможных:

Уровень №0: Элементарный RL с нуля
Дано: 10к шагов взаимодействия со CartPole, далее тестируем

Уровень №1: RL с нуля
Дано: 100к шагов взаимодействия со Atari, далее тестируем

======= Текущие алгоритмы находятся здесь =========

Уровень №2: RL с помощью демонстраций
Дано: 100к траекторий игры среднего человека в Atari; 10к шагов взаимодействия с Atari, далее тестируем

Уровень №3: Сложный RL с помощью демонстраций
Дано: N траекторий игр людей в Starcraft; K часов игры против бота, далее тестируем

Уровень №4: Сложный RL с использованием кучи разных данных
Дано: википедия, форумы по starcraft, видео по starcraft; 1 час игры против бота, далее тестируем

Уровень №5: Сложный RL с самостоятельным поиском необходимых данных
Дано: википедия, доступ к чтению интернета на X часов; 1 час игры против бота, далее тестируем

Уровень №6: ASI
Дано: википедия, доступ к чтению интернета на X часов; Текстовый запрос с описанием того, какую задачу нужно решить; N часов на генерацию ответа, далее его проверяет система (данных для такой постановки пока нет).

Далее поступаем по вкусу. 

К сожалению, в пост не влезут все примечания и оговорки по поводу этих уровней, если вам интересно, в чём мотивация того или иного пункта, готов обсудить в комментариях. Кроме того, это лишь набросок, и по мере продвижения по шагам детали могут меняться.

Я верю в то, что существует малоразмерная параметризация обучающего алгоритма, который, если обучать с помощью meta-learning, можно продвинуть по всем этим уровням, каждый раз добиваясь superhuman-level. И если весь мир будет занят прикручиванием human-level моделек, обученных подражать людям, к прикладным задачам, за создание сверхразума придётся взяться кому-то ещё.

@knowledge_accumulator

BY Knowledge Accumulator


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/knowledge_accumulator/245

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. The channel appears to be part of the broader information war that has developed following Russia's invasion of Ukraine. The Kremlin has paid Russian TikTok influencers to push propaganda, according to a Vice News investigation, while ProPublica found that fake Russian fact check videos had been viewed over a million times on Telegram. Unlike Silicon Valley giants such as Facebook and Twitter, which run very public anti-disinformation programs, Brooking said: "Telegram is famously lax or absent in its content moderation policy." Such instructions could actually endanger people — citizens receive air strike warnings via smartphone alerts.
from us


Telegram Knowledge Accumulator
FROM American