Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
This ability to mix the public and the private, as well as the ability to use bots to engage with users has proved to be problematic. In early 2021, a database selling phone numbers pulled from Facebook was selling numbers for $20 per lookup. Similarly, security researchers found a network of deepfake bots on the platform that were generating images of people submitted by users to create non-consensual imagery, some of which involved children. On Telegram’s website, it says that Pavel Durov “supports Telegram financially and ideologically while Nikolai (Duvov)’s input is technological.” Currently, the Telegram team is based in Dubai, having moved around from Berlin, London and Singapore after departing Russia. Meanwhile, the company which owns Telegram is registered in the British Virgin Islands. The War on Fakes channel has repeatedly attempted to push conspiracies that footage from Ukraine is somehow being falsified. One post on the channel from February 24 claimed without evidence that a widely viewed photo of a Ukrainian woman injured in an airstrike in the city of Chuhuiv was doctored and that the woman was seen in a different photo days later without injuries. The post, which has over 600,000 views, also baselessly claimed that the woman's blood was actually makeup or grape juice. The Dow Jones Industrial Average fell 230 points, or 0.7%. Meanwhile, the S&P 500 and the Nasdaq Composite dropped 1.3% and 2.2%, respectively. All three indexes began the day with gains before selling off. Pavel Durov, Telegram's CEO, is known as "the Russian Mark Zuckerberg," for co-founding VKontakte, which is Russian for "in touch," a Facebook imitator that became the country's most popular social networking site.
from kr