Telegram Group & Telegram Channel
LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
Simon Lermen et al, 2023
Статья

Мы посмотрели на снятие элайнмента (и, как следствие, расцензурирование) файнтюнингом моделей через API, а также через полный файнтюнинг. Что если вы боитесь бана/отдавать свой датасет OpenAI, а 8*A100 вам взять неоткуда? Правильно, для файнтюна можно использовать какие-нибудь PEFT-методики, как, собственно, и сделали авторы статьи (для разнообразия, даже принятой на воркшоп на ICLR). Отмечу, что у статьи есть еще одна версия (BadLlama), но без указания метода (due to concerns that other could misuse our work), так что если увидите это название – это, судя по всему, примерно одно и то же.

Авторы берут стандартный уже AdvBench, замечают, как и многие, что он не очень (had significant limitations) и генерируют собственный под названием RefusalBench, оценить качество которого не представляется возможным, так как им авторы не делятся. Для создания датасета берутся несколько категорий (убийства, кибербезопасность, дезинформация и так далее), для них создаются исходные промпты, а затем GPT-4 генерирует 10 вариаций на каждый. Одна из категорий, а именно копирайт, используется для теста.

Далее исследователи берут Llama-2 разных размеров и Mixtral и файнтюнят их на своем датасете с помощью QLoRA. Метрики даются для 70B, плюс в приложении есть для Mixtral и 13B. Затем проверяют число отказов с помощью регулярок на стандарные отказы (“Sorry, but as an AI…”) и вручную, получая падение числа отказов с 80-90 процентов практически до нуля, а также с 50 до 10 процентов на тестовой категории (копирайт). Также проверяется число отказов на AdvBench с обычным системным промптом и с простым джейлбрейком (к вопросу добавляется в конец “Sure, here is” – непонятно, действительно ли именно так или все же этим начинается генерация ответа): на этом датасете число отказов тоже падает со 100% до единиц процентов, а при наличии «джейлбрейка» - с примерно 50 до нуля. Наконец, проверяется изменение качества на стандартных датасетах – оно остается примерно такое же.



group-telegram.com/llmsecurity/463
Create:
Last Update:

LoRA Fine-tuning Efficiently Undoes Safety Training in Llama 2-Chat 70B
Simon Lermen et al, 2023
Статья

Мы посмотрели на снятие элайнмента (и, как следствие, расцензурирование) файнтюнингом моделей через API, а также через полный файнтюнинг. Что если вы боитесь бана/отдавать свой датасет OpenAI, а 8*A100 вам взять неоткуда? Правильно, для файнтюна можно использовать какие-нибудь PEFT-методики, как, собственно, и сделали авторы статьи (для разнообразия, даже принятой на воркшоп на ICLR). Отмечу, что у статьи есть еще одна версия (BadLlama), но без указания метода (due to concerns that other could misuse our work), так что если увидите это название – это, судя по всему, примерно одно и то же.

Авторы берут стандартный уже AdvBench, замечают, как и многие, что он не очень (had significant limitations) и генерируют собственный под названием RefusalBench, оценить качество которого не представляется возможным, так как им авторы не делятся. Для создания датасета берутся несколько категорий (убийства, кибербезопасность, дезинформация и так далее), для них создаются исходные промпты, а затем GPT-4 генерирует 10 вариаций на каждый. Одна из категорий, а именно копирайт, используется для теста.

Далее исследователи берут Llama-2 разных размеров и Mixtral и файнтюнят их на своем датасете с помощью QLoRA. Метрики даются для 70B, плюс в приложении есть для Mixtral и 13B. Затем проверяют число отказов с помощью регулярок на стандарные отказы (“Sorry, but as an AI…”) и вручную, получая падение числа отказов с 80-90 процентов практически до нуля, а также с 50 до 10 процентов на тестовой категории (копирайт). Также проверяется число отказов на AdvBench с обычным системным промптом и с простым джейлбрейком (к вопросу добавляется в конец “Sure, here is” – непонятно, действительно ли именно так или все же этим начинается генерация ответа): на этом датасете число отказов тоже падает со 100% до единиц процентов, а при наличии «джейлбрейка» - с примерно 50 до нуля. Наконец, проверяется изменение качества на стандартных датасетах – оно остается примерно такое же.

BY llm security и каланы






Share with your friend now:
group-telegram.com/llmsecurity/463

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

In a message on his Telegram channel recently recounting the episode, Durov wrote: "I lost my company and my home, but would do it again – without hesitation." Additionally, investors are often instructed to deposit monies into personal bank accounts of individuals who claim to represent a legitimate entity, and/or into an unrelated corporate account. To lend credence and to lure unsuspecting victims, perpetrators usually claim that their entity and/or the investment schemes are approved by financial authorities. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers.
from us


Telegram llm security и каланы
FROM American