Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/mathtabletalks/--): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
Математические байки | Telegram Webview: mathtabletalks/4659 -
Telegram Group & Telegram Channel
Математические байки
Действительно — мы уже знаем (хоть всё ещё это и не доказали), что при обходе фигуры площади S на сфере мы поворачиваемся на суммарный угол не 2π, как на плоскости — а на меньший, 2π - (S/R^2). Потому что на (S/R^2) повернулась касательная плоскость при…
Давайте досчитаем? Мы получили, что для прямоугольного треугольника на сфере

s(c) = s(a) + s(b) - (1/2πR^2) s(a) s(b),

где s(r) это площадь круга радиуса r на сфере. Давайте уберём коэффициент: рассмотрим отношение

q(r):= s(r) / (2πR^2),

тогда просто

q(c) = q(a) + q(b) - q(a)*q(b).

И кстати, у q(c) есть отличный смысл: это доля, которую круг занимает от площади полусферы!

Но ещё — при виде выражения A+B-AB просто-таки напрашивается вычесть единицу, ну или вычесть его из единицы, чтобы результат разложился на множители. И мы получим —

(1-q(c)) = (1-q(a))(1-q(b)).

Отлично! А чему величина 1-q(r) равна, что будет, если её посчитать?

Давайте возьмём сферу и нарисуем касающийся её вдоль всего экватора цилиндр. Оказывается, что площади колец, которые пара параллельных горизональных плоскостей вырезает на сфере и на цилиндре — одинаковы! (А если мы спроецируем сферу на цилиндр по лучам, идущим от «вертикальной» оси от северного до южного полюса, и перпендикулярным ей — то такая проекция будет сохранять площади.)

Поэтому площадь сферической шапочки, заданной центральным углом
θ =r/R,
равна

A= 2πR^2 (1-cos θ),

а площадь её дополнения до полусферы — и просто

2πR* (R cos θ) = 2πR^2 * cos θ.

Так что

1-q(r) = cos θ = cos (r/R),

и сферическая теорема Пифагора записывается в своём окончательном виде:

cos (c/R) = cos (a/R) cos (b/R).

И вот это уже окончательный вид сферической теоремы Пифагора!



group-telegram.com/mathtabletalks/4659
Create:
Last Update:

Давайте досчитаем? Мы получили, что для прямоугольного треугольника на сфере

s(c) = s(a) + s(b) - (1/2πR^2) s(a) s(b),

где s(r) это площадь круга радиуса r на сфере. Давайте уберём коэффициент: рассмотрим отношение

q(r):= s(r) / (2πR^2),

тогда просто

q(c) = q(a) + q(b) - q(a)*q(b).

И кстати, у q(c) есть отличный смысл: это доля, которую круг занимает от площади полусферы!

Но ещё — при виде выражения A+B-AB просто-таки напрашивается вычесть единицу, ну или вычесть его из единицы, чтобы результат разложился на множители. И мы получим —

(1-q(c)) = (1-q(a))(1-q(b)).

Отлично! А чему величина 1-q(r) равна, что будет, если её посчитать?

Давайте возьмём сферу и нарисуем касающийся её вдоль всего экватора цилиндр. Оказывается, что площади колец, которые пара параллельных горизональных плоскостей вырезает на сфере и на цилиндре — одинаковы! (А если мы спроецируем сферу на цилиндр по лучам, идущим от «вертикальной» оси от северного до южного полюса, и перпендикулярным ей — то такая проекция будет сохранять площади.)

Поэтому площадь сферической шапочки, заданной центральным углом
θ =r/R,
равна

A= 2πR^2 (1-cos θ),

а площадь её дополнения до полусферы — и просто

2πR* (R cos θ) = 2πR^2 * cos θ.

Так что

1-q(r) = cos θ = cos (r/R),

и сферическая теорема Пифагора записывается в своём окончательном виде:

cos (c/R) = cos (a/R) cos (b/R).

И вот это уже окончательный вид сферической теоремы Пифагора!

BY Математические байки


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/mathtabletalks/4659

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

At the start of 2018, the company attempted to launch an Initial Coin Offering (ICO) which would enable it to enable payments (and earn the cash that comes from doing so). The initial signals were promising, especially given Telegram’s user base is already fairly crypto-savvy. It raised an initial tranche of cash – worth more than a billion dollars – to help develop the coin before opening sales to the public. Unfortunately, third-party sales of coins bought in those initial fundraising rounds raised the ire of the SEC, which brought the hammer down on the whole operation. In 2020, officials ordered Telegram to pay a fine of $18.5 million and hand back much of the cash that it had raised. Friday’s performance was part of a larger shift. For the week, the Dow, S&P 500 and Nasdaq fell 2%, 2.9%, and 3.5%, respectively. "And that set off kind of a battle royale for control of the platform that Durov eventually lost," said Nathalie Maréchal of the Washington advocacy group Ranking Digital Rights. "We as Ukrainians believe that the truth is on our side, whether it's truth that you're proclaiming about the war and everything else, why would you want to hide it?," he said. Since January 2022, the SC has received a total of 47 complaints and enquiries on illegal investment schemes promoted through Telegram. These fraudulent schemes offer non-existent investment opportunities, promising very attractive and risk-free returns within a short span of time. They commonly offer unrealistic returns of as high as 1,000% within 24 hours or even within a few hours.
from us


Telegram Математические байки
FROM American