Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
Свободные диаграммы симплициальных множеств и гомотопические копределы.
Нужно мне было значит какие-то очень конкретные гомотопические копределы симплициальных множеств руками посчитать. И так и сяк пробовал, потом поговорил с разными людьми, нашел рабочий метод, и решил тут зафиксировать на будущее. Метод называется — замена диаграммы пространств на свободную диаграмму пространств.
Пусть у вас есть функтор из какой-то категории в категорию симплициальных множеств F : D —> sSets. Он называется свободным (сдвободное D-пространство, свободная диаграмма), если для каждого n≥0 и d∈D можно выбрать такие подмножества (базис функтора) B_{n,d} ⊆ F(d)_n, которые замкнуты относительно вырождений s_i( B_{n,d} ) ⊆ B_{n+1,d}, и для каждого симплекса x ∈ F(d)_n, существует единственный морфизм f : d' —> d и единственный элемент базиса b∈ B_{n,d'} такой, что F(f)(b)=x.
Для свободного функтора его копредел совпадает с гомотопическим копределом (каноническое отображение является слабой эквивалентностью).
Наиболее рабочий способ вычислять руками конкретные гомотопические копределы, который работает в моём конкретном случае, — это построить морфизм из "удобной" свободной диаграммы в вашу диаграмму, состоящий из слабых эквивалентностей. Типа выбрать удобную "кофибратную замену". Подбор удобной замены — это хитрое дело. Есть стандартные замены, но они большие, неудобные. Как при вычислениях гомологий групп через резольвенту, угадывание хорошей резольвенты — это половина работы, так и тут.
Многие диаграммы сразу свободные. Например, если есть два вложения симплициального множества в два других симплициальных множества S' <—< S >—> S'', то это свободная диаграмма. И гомотопический пушаут совпадает с обычным пушаутом. Если есть последовательность вложений симплициальных множеств S^0 >—> S^1 >—> S^2 —> ..., то это свободная диаграмма, и гомотопический копредел совпадает с копределом. Это стандартная тема.
Приведу более сложный пример, который мне был полезен для понимания. Допустим, у вас есть последовательность вложений, которая теперь проиндексирована не натуральными числами, а целыми. ... >—> S^{-1}>—> S^0 >—> S^1 >—> ... Если их пересечение не пусто, то это не свободная диаграмма. Для простоты предположим, что все они состоят из одной точки S_n = *. Как в этом (казалось бы простейшем) случае гомотопический копредел посчитать? Нужно каждое S_n заменить на слабо эквивалентное S'_n такое, чтобы пересечение было пусто. Например, в качестве S'_n можно выбрать такое одномерное симплициальное множество ... —> (n-2) —> (n-1) —> (n), составленное из склеенных отрезков, проиндексированных целыми числами не больше n. Такой симплициальный аналог луча (-∞,n]. Более строго его можно описать как 1-скелет от нерва упорядоченного множества целых чисел не больше n. Отображения S'_n —> S'_{n+1} определить как вложения. И получается, что это уже свободная диаграмма и копредел это объединение, которое стягиваемое.
Список литературы:
[1] Dwyer, William G., and Daniel M. Kan. "Function complexes for diagrams of simplicial sets." (Определение свободной диаграммы §2.4. Утверждение про гомотопические копределы §4.2.)
[2] Farjoun, Emmanuel Dror. "Homotopy and homology of diagrams of spaces." (Прежде всего §2.4)
[3] Farjoun, Emmanuel. "Cellular spaces, null spaces and homotopy localization" (Аппендикс "Homotopy colimits and fibrations").
BY Математическая свалка Сепы
Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260
"Your messages about the movement of the enemy through the official chatbot … bring new trophies every day," the government agency tweeted. Telegram was founded in 2013 by two Russian brothers, Nikolai and Pavel Durov. The company maintains that it cannot act against individual or group chats, which are “private amongst their participants,” but it will respond to requests in relation to sticker sets, channels and bots which are publicly available. During the invasion of Ukraine, Pavel Durov has wrestled with this issue a lot more prominently than he has before. Channels like Donbass Insider and Bellum Acta, as reported by Foreign Policy, started pumping out pro-Russian propaganda as the invasion began. So much so that the Ukrainian National Security and Defense Council issued a statement labeling which accounts are Russian-backed. Ukrainian officials, in potential violation of the Geneva Convention, have shared imagery of dead and captured Russian soldiers on the platform. At this point, however, Durov had already been working on Telegram with his brother, and further planned a mobile-first social network with an explicit focus on anti-censorship. Later in April, he told TechCrunch that he had left Russia and had “no plans to go back,” saying that the nation was currently “incompatible with internet business at the moment.” He added later that he was looking for a country that matched his libertarian ideals to base his next startup. He floated the idea of restricting the use of Telegram in Ukraine and Russia, a suggestion that was met with fierce opposition from users. Shortly after, Durov backed off the idea.
from ms