Telegram Group & Telegram Channel
Теперь обозначим n-кратный смэш A с собой через A^n, и обозначим
G_n := [A^n, H] при n≥1.
Получаем набор групп {G_n, n≥1} и отображений множеств
G_n × G_m -> G_{n+m}.

Известны две разных ситуации, когда из них можно соорудить что-то лиевское:

1) A=S¹.Тогда все группы G_n абелевы, скобки Самельсона билинейны и удовлетворяют тождеству Якоби; получаем градуированную квазиалгебру Ли (отличается от алгебры Ли отсутствием тождества (f,f)=0). То же рассуждение должно работать, если A — надстройка или ко-H-пространство.

2) A=S⁰. Тогда A^n=A, все группы G_n изоморфны G=[A,H], и наши отображения
G×G->G
совпадают с коммутатором в группе G.
Можно теперь взять какую-нибудь центральную фильтрацию* {F_nG} на G (например, нижний центральный ряд) и рассмотреть факторгруппы
L_n := F_nG / F_{n+1}G
и индуцированные групповым коммутатором отображения
L_n × L_m -> L_{n+m}.
Проверяется, что это действительно градуированная алгебра Ли; впрочем, без кошулевых знаков в тождестве Якоби.
Возможно, то же рассуждение работает всегда, когда AлA≈A.
----------------
...Было бы чудесно в общем случае указать естественный подфактор Г_n в G_n (зависящий от A,H и n) так, чтобы из отображения множеств
G_n×G_m -> G_{n+m}
получилось билинейное отображение абелевых групп
Г_n×Г_m -> Г_{n+m},
а ситуации выше были его частными случаями. То есть,
в ситуации 1) хочется
Г_n = G_n / 0,
в ситуации 2) хочется
Г_n = F_nG_n / F_{n+1}G_n = L_n.
----------------
*Если K,R<G — подгруппы, то (K,R)<G — это подгруппа, порожденная коммутаторами вида (k,r).
Фильтрация, то есть вложенная цепочка подгрупп
... < F_2G < F_1G = G,
называется центральной, если (F_nG,F_mG) < F_{n+m}G.
Нижний центральный ряд определяется рекурсивно как
\gamma_nG := (G, \gamma_{n-1}G). Это самая быстро убывающая центральная фильтрация.



group-telegram.com/sweet_homotopy/1999
Create:
Last Update:

Теперь обозначим n-кратный смэш A с собой через A^n, и обозначим
G_n := [A^n, H] при n≥1.
Получаем набор групп {G_n, n≥1} и отображений множеств
G_n × G_m -> G_{n+m}.

Известны две разных ситуации, когда из них можно соорудить что-то лиевское:

1) A=S¹.Тогда все группы G_n абелевы, скобки Самельсона билинейны и удовлетворяют тождеству Якоби; получаем градуированную квазиалгебру Ли (отличается от алгебры Ли отсутствием тождества (f,f)=0). То же рассуждение должно работать, если A — надстройка или ко-H-пространство.

2) A=S⁰. Тогда A^n=A, все группы G_n изоморфны G=[A,H], и наши отображения
G×G->G
совпадают с коммутатором в группе G.
Можно теперь взять какую-нибудь центральную фильтрацию* {F_nG} на G (например, нижний центральный ряд) и рассмотреть факторгруппы
L_n := F_nG / F_{n+1}G
и индуцированные групповым коммутатором отображения
L_n × L_m -> L_{n+m}.
Проверяется, что это действительно градуированная алгебра Ли; впрочем, без кошулевых знаков в тождестве Якоби.
Возможно, то же рассуждение работает всегда, когда AлA≈A.
----------------
...Было бы чудесно в общем случае указать естественный подфактор Г_n в G_n (зависящий от A,H и n) так, чтобы из отображения множеств
G_n×G_m -> G_{n+m}
получилось билинейное отображение абелевых групп
Г_n×Г_m -> Г_{n+m},
а ситуации выше были его частными случаями. То есть,
в ситуации 1) хочется
Г_n = G_n / 0,
в ситуации 2) хочется
Г_n = F_nG_n / F_{n+1}G_n = L_n.
----------------
*Если K,R<G — подгруппы, то (K,R)<G — это подгруппа, порожденная коммутаторами вида (k,r).
Фильтрация, то есть вложенная цепочка подгрупп
... < F_2G < F_1G = G,
называется центральной, если (F_nG,F_mG) < F_{n+m}G.
Нижний центральный ряд определяется рекурсивно как
\gamma_nG := (G, \gamma_{n-1}G). Это самая быстро убывающая центральная фильтрация.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1999

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. On February 27th, Durov posted that Channels were becoming a source of unverified information and that the company lacks the ability to check on their veracity. He urged users to be mistrustful of the things shared on Channels, and initially threatened to block the feature in the countries involved for the length of the war, saying that he didn’t want Telegram to be used to aggravate conflict or incite ethnic hatred. He did, however, walk back this plan when it became clear that they had also become a vital communications tool for Ukrainian officials and citizens to help coordinate their resistance and evacuations. Individual messages can be fully encrypted. But the user has to turn on that function. It's not automatic, as it is on Signal and WhatsApp. These administrators had built substantial positions in these scrips prior to the circulation of recommendations and offloaded their positions subsequent to rise in price of these scrips, making significant profits at the expense of unsuspecting investors, Sebi noted. Soloviev also promoted the channel in a post he shared on his own Telegram, which has 580,000 followers. The post recommended his viewers subscribe to "War on Fakes" in a time of fake news.
from ms


Telegram сладко стянул
FROM American