Telegram Group & Telegram Channel
Теперь обозначим n-кратный смэш A с собой через A^n, и обозначим
G_n := [A^n, H] при n≥1.
Получаем набор групп {G_n, n≥1} и отображений множеств
G_n × G_m -> G_{n+m}.

Известны две разных ситуации, когда из них можно соорудить что-то лиевское:

1) A=S¹.Тогда все группы G_n абелевы, скобки Самельсона билинейны и удовлетворяют тождеству Якоби; получаем градуированную квазиалгебру Ли (отличается от алгебры Ли отсутствием тождества (f,f)=0). То же рассуждение должно работать, если A — надстройка или ко-H-пространство.

2) A=S⁰. Тогда A^n=A, все группы G_n изоморфны G=[A,H], и наши отображения
G×G->G
совпадают с коммутатором в группе G.
Можно теперь взять какую-нибудь центральную фильтрацию* {F_nG} на G (например, нижний центральный ряд) и рассмотреть факторгруппы
L_n := F_nG / F_{n+1}G
и индуцированные групповым коммутатором отображения
L_n × L_m -> L_{n+m}.
Проверяется, что это действительно градуированная алгебра Ли; впрочем, без кошулевых знаков в тождестве Якоби.
Возможно, то же рассуждение работает всегда, когда AлA≈A.
----------------
...Было бы чудесно в общем случае указать естественный подфактор Г_n в G_n (зависящий от A,H и n) так, чтобы из отображения множеств
G_n×G_m -> G_{n+m}
получилось билинейное отображение абелевых групп
Г_n×Г_m -> Г_{n+m},
а ситуации выше были его частными случаями. То есть,
в ситуации 1) хочется
Г_n = G_n / 0,
в ситуации 2) хочется
Г_n = F_nG_n / F_{n+1}G_n = L_n.
----------------
*Если K,R<G — подгруппы, то (K,R)<G — это подгруппа, порожденная коммутаторами вида (k,r).
Фильтрация, то есть вложенная цепочка подгрупп
... < F_2G < F_1G = G,
называется центральной, если (F_nG,F_mG) < F_{n+m}G.
Нижний центральный ряд определяется рекурсивно как
\gamma_nG := (G, \gamma_{n-1}G). Это самая быстро убывающая центральная фильтрация.



group-telegram.com/sweet_homotopy/1999
Create:
Last Update:

Теперь обозначим n-кратный смэш A с собой через A^n, и обозначим
G_n := [A^n, H] при n≥1.
Получаем набор групп {G_n, n≥1} и отображений множеств
G_n × G_m -> G_{n+m}.

Известны две разных ситуации, когда из них можно соорудить что-то лиевское:

1) A=S¹.Тогда все группы G_n абелевы, скобки Самельсона билинейны и удовлетворяют тождеству Якоби; получаем градуированную квазиалгебру Ли (отличается от алгебры Ли отсутствием тождества (f,f)=0). То же рассуждение должно работать, если A — надстройка или ко-H-пространство.

2) A=S⁰. Тогда A^n=A, все группы G_n изоморфны G=[A,H], и наши отображения
G×G->G
совпадают с коммутатором в группе G.
Можно теперь взять какую-нибудь центральную фильтрацию* {F_nG} на G (например, нижний центральный ряд) и рассмотреть факторгруппы
L_n := F_nG / F_{n+1}G
и индуцированные групповым коммутатором отображения
L_n × L_m -> L_{n+m}.
Проверяется, что это действительно градуированная алгебра Ли; впрочем, без кошулевых знаков в тождестве Якоби.
Возможно, то же рассуждение работает всегда, когда AлA≈A.
----------------
...Было бы чудесно в общем случае указать естественный подфактор Г_n в G_n (зависящий от A,H и n) так, чтобы из отображения множеств
G_n×G_m -> G_{n+m}
получилось билинейное отображение абелевых групп
Г_n×Г_m -> Г_{n+m},
а ситуации выше были его частными случаями. То есть,
в ситуации 1) хочется
Г_n = G_n / 0,
в ситуации 2) хочется
Г_n = F_nG_n / F_{n+1}G_n = L_n.
----------------
*Если K,R<G — подгруппы, то (K,R)<G — это подгруппа, порожденная коммутаторами вида (k,r).
Фильтрация, то есть вложенная цепочка подгрупп
... < F_2G < F_1G = G,
называется центральной, если (F_nG,F_mG) < F_{n+m}G.
Нижний центральный ряд определяется рекурсивно как
\gamma_nG := (G, \gamma_{n-1}G). Это самая быстро убывающая центральная фильтрация.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1999

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

"There are a lot of things that Telegram could have been doing this whole time. And they know exactly what they are and they've chosen not to do them. That's why I don't trust them," she said. The gold standard of encryption, known as end-to-end encryption, where only the sender and person who receives the message are able to see it, is available on Telegram only when the Secret Chat function is enabled. Voice and video calls are also completely encrypted. And while money initially moved into stocks in the morning, capital moved out of safe-haven assets. The price of the 10-year Treasury note fell Friday, sending its yield up to 2% from a March closing low of 1.73%. Oh no. There’s a certain degree of myth-making around what exactly went on, so take everything that follows lightly. Telegram was originally launched as a side project by the Durov brothers, with Nikolai handling the coding and Pavel as CEO, while both were at VK. So, uh, whenever I hear about Telegram, it’s always in relation to something bad. What gives?
from us


Telegram сладко стянул
FROM American