Telegram Group & Telegram Channel
#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 16 апреля.
Время проведения семинара 14:00.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идете на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Дворкин Лев

Название: Финитная аппроксимируемость расширений wK4, наследуемых подшкалами (часть 1)

Подшкалой шкалы Крипке (X; R) называется подмножество S носителя X с индуцированным отношением достижимости. Логика L наследуется подшкалами Крипке, если класс её шкал Крипке замкнут относительно взятия подшкал. Файн доказал, что все полные по Крипке расширения K4, наследуемые подшкалами, финитно аппроксимируемы. Данный результат был усилен Захарьящевым на случай логик, наследуемых конфинальными подшкалами (подшкалами, носитель которых конфинален в исходной шкале). Доказательства Файна и Захарьящева основываются на семантике Крипке. Бежанишвилли, Гильярди и Джибладзе дали чисто алгебраическое доказательство результатов Файна и Захарьящева, одновременно обобщив их на расширения wK4 = K + p → p \/ p. Разбору доказательства последнего результата и посвящён доклад. В первой части мы обсудим некоторые факты, касающиеся алгебраической семантики модальных логик. В отличие от семантики Крипке, данной семантике уделяют мало времени в курсах по модальной логике, поэтому мы остановимся на ней достаточно подробно. Вторая часть посвящена непосредственно доказательству результата. От слушателей предполагается знание базовых фактов о модальных логиках и семантике Крипке.

ВК



group-telegram.com/msu_mathlog/201
Create:
Last Update:

#матлог #спецсеминар #не_мехмат #МФТИ

Уважаемые коллеги, приглашаем вас на логический семинар лаборатории им. Манина Высшей школы современной математики МФТИ (ВШМ).
Семинар пройдёт в среду 16 апреля.
Время проведения семинара 14:00.

Место проведения: МФТИ, Административный корпус, ауд. 322,
Первомайская ул. д.7, Долгопрудный.
Чтобы пройти на семинар, если у вас нет пропуска в МФТИ, достаточно сказать, что вы идете на семинар ВШМ и предъявить паспорт.

К семинару можно подключиться дистанционно, для получения ссылки пишите на почту [email protected].

Докладчик: Дворкин Лев

Название: Финитная аппроксимируемость расширений wK4, наследуемых подшкалами (часть 1)

Подшкалой шкалы Крипке (X; R) называется подмножество S носителя X с индуцированным отношением достижимости. Логика L наследуется подшкалами Крипке, если класс её шкал Крипке замкнут относительно взятия подшкал. Файн доказал, что все полные по Крипке расширения K4, наследуемые подшкалами, финитно аппроксимируемы. Данный результат был усилен Захарьящевым на случай логик, наследуемых конфинальными подшкалами (подшкалами, носитель которых конфинален в исходной шкале). Доказательства Файна и Захарьящева основываются на семантике Крипке. Бежанишвилли, Гильярди и Джибладзе дали чисто алгебраическое доказательство результатов Файна и Захарьящева, одновременно обобщив их на расширения wK4 = K + p → p \/ p. Разбору доказательства последнего результата и посвящён доклад. В первой части мы обсудим некоторые факты, касающиеся алгебраической семантики модальных логик. В отличие от семантики Крипке, данной семантике уделяют мало времени в курсах по модальной логике, поэтому мы остановимся на ней достаточно подробно. Вторая часть посвящена непосредственно доказательству результата. От слушателей предполагается знание базовых фактов о модальных логиках и семантике Крипке.

ВК

BY Кафедра математической логики и теории алгоритмов мехмата МГУ


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/msu_mathlog/201

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

After fleeing Russia, the brothers founded Telegram as a way to communicate outside the Kremlin's orbit. They now run it from Dubai, and Pavel Durov says it has more than 500 million monthly active users. But the Ukraine Crisis Media Center's Tsekhanovska points out that communications are often down in zones most affected by the war, making this sort of cross-referencing a luxury many cannot afford. Following this, Sebi, in an order passed in January 2022, established that the administrators of a Telegram channel having a large subscriber base enticed the subscribers to act upon recommendations that were circulated by those administrators on the channel, leading to significant price and volume impact in various scrips. Groups are also not fully encrypted, end-to-end. This includes private groups. Private groups cannot be seen by other Telegram users, but Telegram itself can see the groups and all of the communications that you have in them. All of the same risks and warnings about channels can be applied to groups. The picture was mixed overseas. Hong Kong’s Hang Seng Index fell 1.6%, under pressure from U.S. regulatory scrutiny on New York-listed Chinese companies. Stocks were more buoyant in Europe, where Frankfurt’s DAX surged 1.4%.
from us


Telegram Кафедра математической логики и теории алгоритмов мехмата МГУ
FROM American