group-telegram.com/neural_cell/186
Last Update:
MEG/EEG Bloopers. Part 2
#neuroimaging
Продолжаю серию пасхалок из анализа сигналов мозга. Активность, регистрируемая с помощью МЭГ и ЭЭГ, представлена ритмическими осцилляциями. Один из стандартных способов оценить, насколько те или иные ритмы выражены, это вычисление спектральной плотности мощности. Характерный спектр МЭГ/ЭЭГ (см. рис. А), представлен несколькими диапазонами частот, наиболее мощный из которых соответствует альфа-ритму (8-12 Гц). Именно его рост мы наблюдаем при закрытии глаз.
Также во многие процессы вовлекается более высокочастотный бета-ритм (12-30 Гц): его связывают с сенсомоторными задачами, вниманием, рабочей памятью и т. д. И в анализе этого ритма может крыться подвох!
Дело в том, что бета может оказаться гармоникой, порождённой альфа-ритмом. Обратимся к примеру. Смоделировав простую синусоиду в альфа-диапазоне на 10 Гц, я получаю характерный пик в спектре на 10 Гц (С). Добавив к этой синусоиде нелинейную компоненту за счёт прибавления квадрата этой синусоиды с небольшим коэффициентом, на спектре можно заметить дополнительный гармонический пик на 20 Гц (D) — а это уже бета-ритм! Похожий пик можно получить и при моделировании синусоиды непосредственно в бета-диапазоне (E).
Вклад гармоник от альфы в оценку бета-ритма, увы, не умозрительный конструкт. Во-первых, каноничный сенсомоторный мю-ритм, который по частотному диапазону соответствует альфе, обладает не синусоидальной, а аркообразной формой. И очень часто ему сопутствуют гармоники в бете. Во-вторых, стандартная затылочная альфа тоже от этого не застрахована. На графике (B) представлен спектр ЭЭГ одного человека в состоянии закрытых глаз. Наряду с пиком в альфа-ритме наблюдается пик и в бете, зависящий от выраженности альфы. Анализ этого феномена более подробно представлен в этой статье (как и некоторые полезные эвристики).
Возникает вопрос — что с этим делать?