Telegram Group & Telegram Channel
Contextual Position Encoding: Learning to Count What's Important

все, думаю, пользовались разными позиционными кодировщиками - абсолютными, относительными, обучаемыми, кто-то даже сильно знаком с RoPE, а кто-то с алиби. цель всех этих вариантов была добавить релевантную информацию относительно позиции токена.

а для чего? ну, далее механизму внимания было легче проводить всякие риуталы с токеном *в контексте с другими токенами.* так а почему бы не попробовать сразу сделать поз энкодинг с опорой на контекст?

авторы предложили именно такое (СoPE), объединили детали из относительного и обучаемых энкодингов - позиции кодируются как сумма сигмоид между дот продактом запросов и ключей (queries & values). таким образом получается опора на предыдущий контекст исключительно, так еще и через сигмоиду определяем степень влияния этого контекста

к тому же такой позиционный скаляр может принимать и дробные значения. поэтому составляют обучаемый эмбеддинг для каждой целочисленной позиции (вплоть до максимальной длины трансформера), а под получившуюся позицию (которая может быть дробной) интерполируют соседние эмбеддинги под целочисленные позиции (да, немного душновато, зато круто как по мне!)

с CoPE ллмки начинают лучше считать объекты (даже если считать на инференсе приходится оод значения по сравнению с трейном) и в выборочном копировании, да и не отстает в классичном языковом моделировании

смущает только Figure 3 (и далее в рассуждениях я могу ошибаться) - как я пон, они говорят, что может CoPE обобщаться на более длинный контекст, что отчасти так, у него меньше перплексия, но ввиду грамотной интерполяции (а не экстраполяции) дробных позиций - если мы удлиняем контекст с 512 до 1024 например на евале, то все равно будем видеть токены от 0 до 512, пушто на трейне мы их и не видели. то есть этот метод действительно выглядит лучше, но кмк по другим причинам (если вы нашли ошибку в моем рассуждении - напишите, мне интересно почитать)

энивей, это новый крутой метод делать поз энкодинг - авторы имхо достаточно показали преимущество над RoPE и абсолютным и относительным позиционным кодированием + код есть (и комплексити побольше, но несильно), осталось посмотреть, что происходит на больших моделях вместе с этим

👀LINK



group-telegram.com/rizzearch/266
Create:
Last Update:

Contextual Position Encoding: Learning to Count What's Important

все, думаю, пользовались разными позиционными кодировщиками - абсолютными, относительными, обучаемыми, кто-то даже сильно знаком с RoPE, а кто-то с алиби. цель всех этих вариантов была добавить релевантную информацию относительно позиции токена.

а для чего? ну, далее механизму внимания было легче проводить всякие риуталы с токеном *в контексте с другими токенами.* так а почему бы не попробовать сразу сделать поз энкодинг с опорой на контекст?

авторы предложили именно такое (СoPE), объединили детали из относительного и обучаемых энкодингов - позиции кодируются как сумма сигмоид между дот продактом запросов и ключей (queries & values). таким образом получается опора на предыдущий контекст исключительно, так еще и через сигмоиду определяем степень влияния этого контекста

к тому же такой позиционный скаляр может принимать и дробные значения. поэтому составляют обучаемый эмбеддинг для каждой целочисленной позиции (вплоть до максимальной длины трансформера), а под получившуюся позицию (которая может быть дробной) интерполируют соседние эмбеддинги под целочисленные позиции (да, немного душновато, зато круто как по мне!)

с CoPE ллмки начинают лучше считать объекты (даже если считать на инференсе приходится оод значения по сравнению с трейном) и в выборочном копировании, да и не отстает в классичном языковом моделировании

смущает только Figure 3 (и далее в рассуждениях я могу ошибаться) - как я пон, они говорят, что может CoPE обобщаться на более длинный контекст, что отчасти так, у него меньше перплексия, но ввиду грамотной интерполяции (а не экстраполяции) дробных позиций - если мы удлиняем контекст с 512 до 1024 например на евале, то все равно будем видеть токены от 0 до 512, пушто на трейне мы их и не видели. то есть этот метод действительно выглядит лучше, но кмк по другим причинам (если вы нашли ошибку в моем рассуждении - напишите, мне интересно почитать)

энивей, это новый крутой метод делать поз энкодинг - авторы имхо достаточно показали преимущество над RoPE и абсолютным и относительным позиционным кодированием + код есть (и комплексити побольше, но несильно), осталось посмотреть, что происходит на больших моделях вместе с этим

👀LINK

BY rizzearch







Share with your friend now:
group-telegram.com/rizzearch/266

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

But Telegram says people want to keep their chat history when they get a new phone, and they like having a data backup that will sync their chats across multiple devices. And that is why they let people choose whether they want their messages to be encrypted or not. When not turned on, though, chats are stored on Telegram's services, which are scattered throughout the world. But it has "disclosed 0 bytes of user data to third parties, including governments," Telegram states on its website. The regulator said it had received information that messages containing stock tips and other investment advice with respect to selected listed companies are being widely circulated through websites and social media platforms such as Telegram, Facebook, WhatsApp and Instagram. It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." In February 2014, the Ukrainian people ousted pro-Russian president Viktor Yanukovych, prompting Russia to invade and annex the Crimean peninsula. By the start of April, Pavel Durov had given his notice, with TechCrunch saying at the time that the CEO had resisted pressure to suppress pages criticizing the Russian government. The fake Zelenskiy account reached 20,000 followers on Telegram before it was shut down, a remedial action that experts say is all too rare.
from nl


Telegram rizzearch
FROM American