Warning: mkdir(): No space left on device in /var/www/group-telegram/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/rizzearch/-266-267-268-269-): Failed to open stream: No such file or directory in /var/www/group-telegram/post.php on line 50
rizzearch | Telegram Webview: rizzearch/266 -
Telegram Group & Telegram Channel
Contextual Position Encoding: Learning to Count What's Important

все, думаю, пользовались разными позиционными кодировщиками - абсолютными, относительными, обучаемыми, кто-то даже сильно знаком с RoPE, а кто-то с алиби. цель всех этих вариантов была добавить релевантную информацию относительно позиции токена.

а для чего? ну, далее механизму внимания было легче проводить всякие риуталы с токеном *в контексте с другими токенами.* так а почему бы не попробовать сразу сделать поз энкодинг с опорой на контекст?

авторы предложили именно такое (СoPE), объединили детали из относительного и обучаемых энкодингов - позиции кодируются как сумма сигмоид между дот продактом запросов и ключей (queries & values). таким образом получается опора на предыдущий контекст исключительно, так еще и через сигмоиду определяем степень влияния этого контекста

к тому же такой позиционный скаляр может принимать и дробные значения. поэтому составляют обучаемый эмбеддинг для каждой целочисленной позиции (вплоть до максимальной длины трансформера), а под получившуюся позицию (которая может быть дробной) интерполируют соседние эмбеддинги под целочисленные позиции (да, немного душновато, зато круто как по мне!)

с CoPE ллмки начинают лучше считать объекты (даже если считать на инференсе приходится оод значения по сравнению с трейном) и в выборочном копировании, да и не отстает в классичном языковом моделировании

смущает только Figure 3 (и далее в рассуждениях я могу ошибаться) - как я пон, они говорят, что может CoPE обобщаться на более длинный контекст, что отчасти так, у него меньше перплексия, но ввиду грамотной интерполяции (а не экстраполяции) дробных позиций - если мы удлиняем контекст с 512 до 1024 например на евале, то все равно будем видеть токены от 0 до 512, пушто на трейне мы их и не видели. то есть этот метод действительно выглядит лучше, но кмк по другим причинам (если вы нашли ошибку в моем рассуждении - напишите, мне интересно почитать)

энивей, это новый крутой метод делать поз энкодинг - авторы имхо достаточно показали преимущество над RoPE и абсолютным и относительным позиционным кодированием + код есть (и комплексити побольше, но несильно), осталось посмотреть, что происходит на больших моделях вместе с этим

👀LINK



group-telegram.com/rizzearch/266
Create:
Last Update:

Contextual Position Encoding: Learning to Count What's Important

все, думаю, пользовались разными позиционными кодировщиками - абсолютными, относительными, обучаемыми, кто-то даже сильно знаком с RoPE, а кто-то с алиби. цель всех этих вариантов была добавить релевантную информацию относительно позиции токена.

а для чего? ну, далее механизму внимания было легче проводить всякие риуталы с токеном *в контексте с другими токенами.* так а почему бы не попробовать сразу сделать поз энкодинг с опорой на контекст?

авторы предложили именно такое (СoPE), объединили детали из относительного и обучаемых энкодингов - позиции кодируются как сумма сигмоид между дот продактом запросов и ключей (queries & values). таким образом получается опора на предыдущий контекст исключительно, так еще и через сигмоиду определяем степень влияния этого контекста

к тому же такой позиционный скаляр может принимать и дробные значения. поэтому составляют обучаемый эмбеддинг для каждой целочисленной позиции (вплоть до максимальной длины трансформера), а под получившуюся позицию (которая может быть дробной) интерполируют соседние эмбеддинги под целочисленные позиции (да, немного душновато, зато круто как по мне!)

с CoPE ллмки начинают лучше считать объекты (даже если считать на инференсе приходится оод значения по сравнению с трейном) и в выборочном копировании, да и не отстает в классичном языковом моделировании

смущает только Figure 3 (и далее в рассуждениях я могу ошибаться) - как я пон, они говорят, что может CoPE обобщаться на более длинный контекст, что отчасти так, у него меньше перплексия, но ввиду грамотной интерполяции (а не экстраполяции) дробных позиций - если мы удлиняем контекст с 512 до 1024 например на евале, то все равно будем видеть токены от 0 до 512, пушто на трейне мы их и не видели. то есть этот метод действительно выглядит лучше, но кмк по другим причинам (если вы нашли ошибку в моем рассуждении - напишите, мне интересно почитать)

энивей, это новый крутой метод делать поз энкодинг - авторы имхо достаточно показали преимущество над RoPE и абсолютным и относительным позиционным кодированием + код есть (и комплексити побольше, но несильно), осталось посмотреть, что происходит на больших моделях вместе с этим

👀LINK

BY rizzearch







Share with your friend now:
group-telegram.com/rizzearch/266

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

It is unclear who runs the account, although Russia's official Ministry of Foreign Affairs Twitter account promoted the Telegram channel on Saturday and claimed it was operated by "a group of experts & journalists." Stocks dropped on Friday afternoon, as gains made earlier in the day on hopes for diplomatic progress between Russia and Ukraine turned to losses. Technology stocks were hit particularly hard by higher bond yields. Despite Telegram's origins, its approach to users' security has privacy advocates worried. Some people used the platform to organize ahead of the storming of the U.S. Capitol in January 2021, and last month Senator Mark Warner sent a letter to Durov urging him to curb Russian information operations on Telegram. In the United States, Telegram's lower public profile has helped it mostly avoid high level scrutiny from Congress, but it has not gone unnoticed.
from us


Telegram rizzearch
FROM American