Telegram Group & Telegram Channel
به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.group-telegram.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff



group-telegram.com/nlp_stuff/361
Create:
Last Update:

به سوی سیستم‌۲

پیشرفت‌های هوش مصنوعی در دهه ۲۰۱۰، مدیون آموزش مدل‌های بزرگ دیپ لرنینگی روی دیتاست‌های بزرگ بوده، چیزی که بهش اسکیل‌کردن دیتا و پارامتر گفته می‌شه. با وجود تمام پیشرفت‌های دیپ لرنینگ، اما همچنان شبکه‌های عصبی در برخی مسائل مخصوصا ریزنینگی با سطح انسان فاصله دارند.در چنین شرایطی به قول ایلیا ساتسکیور، دیتا برای هوش مصنوعی به حکم سوخت فسیلی در حال اتمامه و ما دیگه بیشتر از یک اینترنت نداریم تا ازش دیتای آموزشی جدید برای مدل‌هامون بسازیم. وقتی که دیگه نمی‌شه پارامتر‌های مدل و یا داده آموزشی رو اسکیل کرد، شاخه تحقیقاتی جدیدی در پی اسکیل‌کردن میزان محاسبه در زمان اینفرنس یا به اصطلاح inference time compute هست، ایده‌ای که مغز اصلی کارهایی مثل o1 و deepseek هست. این ایده خیلی شبیه بحث‌های دو سیستم پردازشی سیستم‌۱ و سیستم‌۲ در ذهن انسانه. جایی که سیستم‌۱ مسئول اعمال ناخودآگاه و ادراکی انسانه و سیستم‌۲ هم مسئول اعمالی که نیاز به راه‌حل‌های گام به گام دارند (قبلا اینجا راجع بهش صحبت کرده بودیم) حالا این ترم در دانشگاه شریف، درسی با عنوان سیستم‌۲ ارائه شده که قراره به بررسی این داستان و راه‌حل‌های ارائه شده براش بپردازه. موارد زیر جزو سیلابس این درس هستند:

- مقدمه بر مسائل ریزنینگ و سیستم‌۲
- معرفی روش‌های نوروسیمبلیک
- تولید برنامه
- انواع روش‌های پرامپت‌دهی مبتنی بر CoT مثل ToT
- مکانیزم‌های اسکیل‌کردن محاسبه در LLM‌ها
- ریزنینگ با کمک گراف‌های دانش
- نقش LLM Agent‌ها در ریزنینگ
- ارتباط کامپوزیشنالیتی با سیستم‌۲

لینک پلی‌لیست یوتیوب درس:
https://www.youtube.com/playlist?list=PLFr7f4WLNwracR8k8jgYONAp-2pmKrdc3

لینک پلی‌لیست آپارات درس:
https://www.aparat.com/playlist/14269123

لینک کانال تلگرامی درس:
https://www.group-telegram.com/system2_spring2025

پی‌نوشت: اگر میخواید بدانید o1 و deepseek چه ایده‌ و تاریخچه‌ای پشتشونه و مسیر چند سال آتی هوش مصنوعی چه شکلی هست این کورس رو ببینید

#course

@nlp_stuff

BY NLP stuff




Share with your friend now:
group-telegram.com/nlp_stuff/361

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

The perpetrators use various names to carry out the investment scams. They may also impersonate or clone licensed capital market intermediaries by using the names, logos, credentials, websites and other details of the legitimate entities to promote the illegal schemes. Telegram, which does little policing of its content, has also became a hub for Russian propaganda and misinformation. Many pro-Kremlin channels have become popular, alongside accounts of journalists and other independent observers. In the past, it was noticed that through bulk SMSes, investors were induced to invest in or purchase the stocks of certain listed companies. Telegram has gained a reputation as the “secure” communications app in the post-Soviet states, but whenever you make choices about your digital security, it’s important to start by asking yourself, “What exactly am I securing? And who am I securing it from?” These questions should inform your decisions about whether you are using the right tool or platform for your digital security needs. Telegram is certainly not the most secure messaging app on the market right now. Its security model requires users to place a great deal of trust in Telegram’s ability to protect user data. For some users, this may be good enough for now. For others, it may be wiser to move to a different platform for certain kinds of high-risk communications.
from us


Telegram NLP stuff
FROM American