Notice: file_put_contents(): Write of 1710 bytes failed with errno=28 No space left on device in /var/www/group-telegram/post.php on line 50

Warning: file_put_contents(): Only 8192 of 9902 bytes written, possibly out of free disk space in /var/www/group-telegram/post.php on line 50
сладко стянул | Telegram Webview: sweet_homotopy/1978 -
Telegram Group & Telegram Channel
bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.



group-telegram.com/sweet_homotopy/1978
Create:
Last Update:

bundles hate this simple trick
пусть дано расслоение E->X со структурной группой G и слоем F ,(скажем, нам известен его склеивающий коцикл); как "увидеть" ассоциированное с ним главное G-расслоение P->X?
(Понятно, что P можно склеить по тому же коциклу, но хочется увидеть объект как бы "цельным")

1. Если у действия G на F есть свободная орбита, то надо просто рассмотреть эту орбиту и соответствующее ей "подрасслоение" в E. Его слой — непрерывный биективный образ G, то мы получим либо искомое главное G-расслоение, либо его "огрубленный вариант" (то же пространство, но с более грубой топологией). Если G компактна хаусдорфова, то огрублять топологию уже некуда, и всё гарантированно работает.

2. Если свободной орбиты нет, то можно взять "прямую сумму" расслоения E с собой ("прямая сумма" E и E' — это предел диаграммы E -> X <- E'). Получится расслоение над X с тем же коциклом и той же структурной группой, но слой теперь F×F, а стабилизатор точки (f1,f2) — это пересечение стабилизаторов. Есть шанс, что пересечение каких-то двух стабилизаторов тривиально; тогда найдется свободная орбита.

3. В общем случае надо взять пулбэк бесконечно много раз (по разу для каждой орбиты); в таком произведении слоев найдется точка, стабилизатор которой — это пересечение всех стабилизаторов исходного действия. А оно тривиально, если исходное действие было эффективно!

(если исходное действие не эффективно, то можно уменьшить его структурную группу, отфакторизовав по ядру неэффективности
{g из G: g.f=f для всех f из F})

4. Если проделать эту процедуру для векторных расслоений (F=R^n, G=GL(n) или, для удобства, O(n)), то получится в точности расслоение реперов как подмножество в прямой сумме n копий исходного расслоения. "Точка со свободной орбитой" — это набор из n векторов (e1,..,en); пересечение их стабилизаторов при действии GL(n) на R^n тривиально.

BY сладко стянул


Warning: Undefined variable $i in /var/www/group-telegram/post.php on line 260

Share with your friend now:
group-telegram.com/sweet_homotopy/1978

View MORE
Open in Telegram


Telegram | DID YOU KNOW?

Date: |

Continuing its crackdown against entities allegedly involved in a front-running scam using messaging app Telegram, Sebi on Thursday carried out search and seizure operations at the premises of eight entities in multiple locations across the country. At its heart, Telegram is little more than a messaging app like WhatsApp or Signal. But it also offers open channels that enable a single user, or a group of users, to communicate with large numbers in a method similar to a Twitter account. This has proven to be both a blessing and a curse for Telegram and its users, since these channels can be used for both good and ill. Right now, as Wired reports, the app is a key way for Ukrainians to receive updates from the government during the invasion. Markets continued to grapple with the economic and corporate earnings implications relating to the Russia-Ukraine conflict. “We have a ton of uncertainty right now,” said Stephanie Link, chief investment strategist and portfolio manager at Hightower Advisors. “We’re dealing with a war, we’re dealing with inflation. We don’t know what it means to earnings.” "Someone posing as a Ukrainian citizen just joins the chat and starts spreading misinformation, or gathers data, like the location of shelters," Tsekhanovska said, noting how false messages have urged Ukrainians to turn off their phones at a specific time of night, citing cybersafety. Messages are not fully encrypted by default. That means the company could, in theory, access the content of the messages, or be forced to hand over the data at the request of a government.
from no


Telegram сладко стянул
FROM American